

## Homework 1

**Question 1.** [30 marks] Solve the following exercises:

- Exercise 1.4.5
- Exercise 1.4.11
- Exercise 1.5.4

A large part of the course going forward will involve *proofs by induction*. Many of you may have not seen these before, and the following two questions are here to make sure everyone is on the same page.

But first of all, *what* is a “proof by induction”? Well... This is a relatively long story, but here is the gist of it. Often-times we construct a set  $\mathcal{I}$  of mathematical objects in the following way: (a) We describe the “basic objects” of  $\mathcal{I}$ . (b) We describe a way of building larger objects of  $\mathcal{I}$  from the objects we have already built. This is called an **inductive** (or **recursive**) definition.

Then, to prove that some property is true of all elements of  $\mathcal{I}$ , it suffices to prove that: (a) It is true of the “basic objects” of  $\mathcal{I}$ . (b) If it is true of some objects, then it is true of all larger objects built from them.

That’s really abstract, so the next two exercises will try to illustrate it.

**Question 2.** [30 marks] We can build the set of natural numbers  $\mathbb{N}$  by induction as follows: (a)  $0 \in \mathbb{N}$  (that’s the basic object). (b) If  $n \in \mathbb{N}$  then  $n + 1 \in \mathbb{N}$  (that how to build larger objects from smaller ones). If we then wish to prove that some property  $P(n)$  is true of all  $n \in \mathbb{N}$  we have to show that: (a)  $P(0)$  is true. (b) If  $P(n)$  is true, then so is  $P(n + 1)$ . Now, on with the question:

- (1) Prove by induction that for all  $n \in \mathbb{N}$  the following statement is true:

$$\sum_{i=0}^n i^3 = \frac{n^2(n + 1)^2}{4}.$$

- (2) Prove by induction that for all  $n \in \mathbb{N}$  the following statement is true:

$$9^n - 1 \text{ is divisible by 8.}$$

If  $\mathcal{I}$  is defined by induction, then we can also use induction to define functions on  $\mathcal{I}$  – to define a function  $f$  on all of  $\mathcal{I}$  we just need to define  $f$  on the “basic objects” and provided we know how to compute  $f$  on simpler objects, we need to define  $f$  on larger ones built from them.

We can build more things by induction, not just the natural numbers. This will occupy us a lot in the next chapter, and the next exercise is a sort-of warm up.

**Question 3.** [40 marks] We define a set  $\mathcal{S}$  of strings of symbols, inductively, as follows: (a)  $a \in \mathcal{S}$ , and  $b \in \mathcal{S}$  (these are the basic objects). (b) If  $s, t \in \mathcal{S}$  then:  $(s) \in \mathcal{S}$ ,  $(st) \in \mathcal{S}$  (where  $st$  denotes the concatenation of  $s$  and  $t$ ), and  $([s] \uparrow [t]) \in \mathcal{S}$  (so in this example we have three ways of building objects from smaller ones). For example:

$$a \in \mathcal{S}, (a) \in \mathcal{S}, (aa) \in \mathcal{S}, ((a)a) \in \mathcal{S}, ([a] \uparrow [(ba)]) \in \mathcal{S}.$$

We can inductively define a function  $\text{bra} : \mathcal{S} \rightarrow \mathbb{N}$  as follows  $\text{bra}(a) := 0$ ,  $\text{bra}(b) := 0$ . Once  $\text{bra}(s), \text{bra}(t)$  have been defined, we set:

$$\begin{aligned}\text{bra}((s)) &:= \text{bra}(s) + 2 \\ \text{bra}((st)) &:= \text{bra}(s) + \text{bra}(t) + 2 \\ \text{bra}(([s] \uparrow [t])) &:= \text{bra}(s) + \text{bra}(t) + 6\end{aligned}$$

(1) Prove that for all  $s \in \mathcal{S}$ , we have that  $\text{bra}(s)$  is even.

Let  $x, y \in \mathcal{S}$ . We can define a function  $\text{Sub}_{[x/a,y/b]} : \mathcal{S} \rightarrow \mathcal{S}$  as follows  $\text{Sub}_{[x/a,y/b]}(a) := x$ ,  $\text{Sub}_{[x/a,y/b]}(b) := y$ , and:

$$\begin{aligned}\text{Sub}_{[x/a,y/b]}((s)) &:= (\text{Sub}_{[x/a,y/b]}(s)) \\ \text{Sub}_{[x/a,x/b]}((st)) &:= (\text{Sub}_{[x/a,y/b]}(s)\text{Sub}_{[x/a,y/b]}(t)) \\ \text{Sub}_{[x/a,y/b]}(([s] \uparrow [t])) &:= ([\text{Sub}_{[x/a,y/b]}(s)] \uparrow [\text{Sub}_{[x/a,y/b]}(t)])\end{aligned}$$

(2) Prove that for all  $s \in \mathcal{S}$ ,  $\text{Sub}_{[a/a,a/b]}(s)$  does not contain the letter  $b$ .

(3) Prove that for all  $s \in \mathcal{S}$ ,  $\text{Sub}_{[bb/a,aa/b]}(s)$  contains an even number of occurrences of each of  $a$  and  $b$ .

Finally, define a function  $\text{let} : \mathcal{S} \rightarrow \mathbb{N}$  as follows:  $\text{let}(a) = 1$ ,  $\text{let}(b) = 1$ , and:

$$\begin{aligned}\text{let}((s)) &:= \text{let}(s) \\ \text{let}((st)) &:= \text{let}(s) + \text{let}(t) \\ \text{let}(([s] \uparrow [t])) &:= \text{let}(s) + \text{let}(t)\end{aligned}$$

(4) Show that for all  $s \in \mathcal{S}$ ,  $\text{bra}(\text{Sub}_{[(a)/a,(b)/b]}(s)) = \text{bra}(s) + 2\text{let}(s)$ .

[*Hint.* I am asking here for a “formal” proof by induction. Clearly write out what you need to prove. This should guide you.]