

Homework 3

Question 1. [20 marks] Solve the following exercises from **Week 3(b)** of the notes:

- (1) Exercise 1.1.6 [*Hint.* If you think there is an unreasonable number of terms, justify why you don't want to write all of them out.]
- (2) Exercise 1.1.9.
- (3) Exercise 1.1.11.

Question 2. [20 marks] Let \mathcal{L} be a first-order language with two unary function symbols \underline{f} and \underline{g} .

- (1) Find three \mathcal{L} -sentences ϕ_1, ϕ_2, ϕ_3 , such that:

- In every \mathcal{L} -structure \mathcal{M} , we have that $\mathcal{M} \models \phi_1$ if and only if \underline{f} and \underline{g} are constant.
- In every \mathcal{L} -structure \mathcal{M} , we have that $\mathcal{M} \models \phi_2$ if and only if $\text{im}(\underline{f}) \cap \text{im}(\underline{g})$ contains exactly two elements.
- In every \mathcal{L} -structure \mathcal{M} , we have that $\mathcal{M} \models \phi_3$ if and only if $\underline{f} = \underline{g}$.

You don't have to give formal proofs that this is the case, but I suggest that you do.

- (2) Consider the following \mathcal{L} -formulas:

$$\begin{aligned}\psi_1 : \forall x \forall y \underline{f}(x) \doteq \underline{g}(y) \quad \psi_2 : \exists x \forall y \underline{f}(x) \doteq \underline{g}(y) \\ \psi_3 : \forall x \exists y \underline{f}(x) \doteq \underline{g}(y) \quad \psi_4 : \exists x \exists y \underline{f}(x) \doteq \underline{g}(y)\end{aligned}$$

Find \mathcal{L} -structures $\mathcal{M}_1, \dots, \mathcal{M}_4$ and $\mathcal{N}_1, \dots, \mathcal{N}_4$ such that $\mathcal{M}_i \models \psi_i$ and $\mathcal{N}_i \models \neg \psi_i$ for each $i \leq 4$.

Question 3. [20 marks] Let \mathcal{L} be a language with a single unary relation symbol \underline{P} and a single binary relation symbol \underline{R} . Consider the following \mathcal{L} -sentences:

$$\begin{aligned}\phi_1 : \exists x \forall y \exists z ((\underline{P}(x) \rightarrow \underline{R}(x, y)) \wedge (\underline{P}(y) \wedge \neg \underline{R}(y, z))) \\ \phi_2 : \exists x \exists z ((\underline{R}(z, x) \rightarrow \underline{R}(x, z)) \rightarrow \forall y \underline{R}(x, y)) \\ \phi_3 : \forall y (\exists z \forall t \underline{R}(t, z) \wedge \forall x (\underline{R}(x, y) \rightarrow \neg \underline{R}(x, y))) \\ \phi_4 : \exists x \forall y ((\underline{P}(y) \rightarrow \underline{R}(y, x)) \wedge (\forall u ((\underline{P}(u) \rightarrow \underline{R}(u, y)) \rightarrow \underline{R}(x, y)))\end{aligned}$$

For each of these formulas determine whether or not it is satisfied in each of the following \mathcal{L} -structures:

- (1) A structure with universe \mathbb{N} , where \underline{R} is interpreted as the usual order \leq and \underline{P} is the set of all even numbers.

(2) A structure with universe $\mathcal{P}(\mathbb{N})$, where \underline{R} is interpreted as \subseteq and \underline{P} is the set of all finite subsets of \mathbb{N} .

(3) A structure with universe \mathbb{R} where \underline{R} is interpreted as the relation $\{(x, y) \in \mathbb{R}^2 : x = y^2\}$ and \underline{P} is interpreted as the set of all rational numbers.

Question 4. [40 marks] In all the languages considered in this exercise \underline{R} is a binary relation symbol, $\underline{\star}$, $\underline{\oplus}$ are binary function symbols, and \underline{c} , \underline{d} are constant symbols.

(1) In each of the following five cases you are given a language \mathcal{L}_i and two structures \mathcal{M}_i and \mathcal{N}_i . For each $i \leq 5$ find an \mathcal{L}_i -sentence which is true in \mathcal{M}_i but false in \mathcal{N}_i .

(1) $\mathcal{L}_1 = \{\underline{R}\}$	$\mathcal{M}_1 = (\mathbb{N}; \leq)$	$\mathcal{N}_1 = (\mathbb{Z}; \leq)$
(2) $\mathcal{L}_2 = \{\underline{R}\}$	$\mathcal{M}_2 = (\mathbb{Q}; \leq)$	$\mathcal{N}_2 = (\mathbb{Z}; \leq)$
(3) $\mathcal{L}_3 = \{\underline{\star}\}$	$\mathcal{M}_3 = (\mathbb{N}; \times)$	$\mathcal{N}_3 = (\mathcal{P}(\mathbb{N}); \cap)$
(4) $\mathcal{L}_4 = \{\underline{c}, \underline{\star}\}$	$\mathcal{M}_4 = (\mathbb{N}; 1, \times)$	$\mathcal{N}_4 = (\mathbb{Z}; 1, \times)$
(5) $\mathcal{L}_5 = \{\underline{c}, \underline{d}, \underline{\oplus}, \underline{\star}\}$	$\mathcal{M}_5 = (\mathbb{R}; 0, 1, +, \times)$	$\mathcal{N}_5 = (\mathbb{Q}; 0, 1, +, \times)$

(2) For each of the sentences below, in the language $\{\underline{c}, \underline{\oplus}, \underline{\star}, \underline{R}\}$ find a structure which satisfies it and a structure which satisfies its negation:

$\phi_1 : \forall x \forall y \exists z (\neg y \dot{=} \underline{c} \rightarrow x \underline{\oplus} (y \underline{\star} z) \dot{=} \underline{c})$

$\phi_2 : \forall u \forall v \forall w \exists x (\neg x \dot{=} \underline{c} \rightarrow u \oplus (v \oplus x) \oplus (w \oplus x \star (x \star x)) \dot{=} \underline{c})$

$\phi_3 : \forall x \forall y \forall z (\underline{R}(x, x) \rightarrow \underline{R}(x \underline{\star} z, y \underline{\star} z))$

$\phi_4 : \forall x \forall y \forall z (\underline{R}(x, x) \wedge (\underline{R}(x, y) \wedge \underline{R}(y, z) \rightarrow \underline{R}(x, z)) \wedge (\underline{R}(x, y) \rightarrow \underline{R}(y, x)))$

$\phi_5 : \forall x \forall y (\underline{R}(x, y) \rightarrow \neg \underline{R}(y, x)).$