CHAPTER 2

Learning how to count and reason

The first chapter of our course starts at the reception of Hilbert’s Hotel. Hilbert’s
Hotel is a special place, it has rooms 0,1,2,...,n,..., one for each n € N. The sign
outside the hotel clearly reads NO VACANCY, but you're out of gas and desperate
for a room. You arrive there around 11pm and beg the receptionist. He thinks for
a minute and realises that he can solve your problem. He instructs all residents to
exit their rooms and enter the rooms immediately to the right. So the resident of
room 0 is now in room 1, the resident of room 1 is now in room 2, etc. At the end,
everybody has a new room and the receptionist proudly announces to you that room
0 is empty.

Around midnight, a driver arrives at the reception. He’s the driver of von Neumann’s
Van, and von Neumann’s Van is a very long van. It has seats 0,1,2...,n,..., one for
each n € N. “All the passengers on my van need somewhere to spend the night” he
tells the receptionist. The receptionist, tired from his long shift, reluctantly decides
to accommodate the bus driver. After thinking about it, he ask everyone to get out of
their rooms again, and instructs the resident of room 1 to go to room 2, the resident
of room 2 to go to room 4, the resident of room 3 to go to room 6, etc. At the end,
you're still in room 0, but rooms 1,3,5,... are all empty, and each passenger on
Cantor’s Bus can spend the night in room 2n + 1, where n was their seat number.

“What now?” the receptionist asks the new arrival. “Sorry sir” he says, “I'm the pilot
of Peano’s Plane. On my plane there are rows numbered by 0,1,2,...,n,..., one for
each n € N, and on each row there are seas 0,1,...,n,..., again one for each n € N.
All my passengers need somewhere to spend the night!” The receptionist who is by
now fed up with all these people ignoring the NO VACANCY sign outside the hotel,
comes to your room:

Exercise. Find a way to fit every passenger on Peano’s Plane in the hotel.

It’s now past 3am, and Cantor’s Cruise Ship (aptly named “The Paradise”) has
reached the nearest port. It has rooms numbered by x € R. The captain approaches
the reception. Before he even gets the chance to say anything, the receptionist looks
at him, points at the NO VACANCY sign, through the window, and goes to sleep.
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1. Pretty naive set theory

1.1. The basics. If you were excited to learn the formal definition of a set, you
should probably curb your enthusiasm: We will not formally define what a set is (at
least not in this class). It’s more important, for now, to learn how to use sets. If that
makes you feel a bit uneasy, keep in mind that people more-or-less understood what
sets were for quite some time before Zermelo, Fraenkel, and the Axiom of Choice
gave a formal definition.

For now, a set will just mean some “collection” of (mathematical) objects. Even
though it is in quotes, the word collection is important here. Sets are not lists.

There are two usual ways that we can write a set down:

{ A (MORALLY) COMPLETE LIST OF ITS OBJECTS },

or:

{ OBJECTS WITH SOME PROPERTY }

In the latter case, if P is a property we may write {x : P(z)} to mean the set of all
objects x satisfying property P. If X is a set and = some (mathematical) object, we
write:

e r € X to mean that x is an element of X.

e r ¢ X to mean that x is not an element of X.
Example 1.1.1. Here’s a couple of sets, illustrating the two ways we can write sets
down, from above:

e N =1{0,1,2,3,...} — a morally complete list of the elements of the set of
natural numbers. The natural numbers are the starting point of most
things,! so throughout this chapter we’ll discuss them in much more detail.

e A less important example is the following F = {n : n € N and P(n)}, where
P(n) holds of a natural number if and only if it is even — objects with some

property.

Here is the first crucial property of sets. It is important enough to have a pretentious
name:

Extensionality: Two sets are the same if and only if they have the same
elements.

LGod created the integers natural numbers, the rest is the work of man” and so on and so on.
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A bit more mathematically put:

X =Y if and only if: (1) for all z € X, we have x € Y
and
(2) for ally € Y, we have y € X.

That’s kinda abstract, but it really is not saying all that much — well, actually, it’s
saying quite a fair bit. Here’s an example:

Example 1.1.2. Consider the sets:

A=1{1,2,3,4} and B = {1,3,1,4,2,2}

Observe that for all z € A we have that x € B and for all x € B we have that x € A.
So, by extensionality, A = B. So, as [ said before: Sets are not lists/ The moral of
the story is that order and repetition do not matter.

Extensionality has one funny consequence. It implies that if there is a set with
no elements, then it is unique. As silly as it may sound, we will need to convince
ourselves of the following:

Empty set: There is a set with no elements.
We will denote the unique set from above by ().

Definition 1.1.3. Let X and Y be sets. We say that X is a subset of YV if for all
x € X we have that x € Y. We denote this by X C Y.

Example 1.1.4. For all sets X, X C X and ) C X. The former one is clear, but
maybe we should think a bit about the latter: Since the empty set has no elements,
every element of the empty set is an element of any set. Now say that phrase three
more times and see if the words “element” and “set” have lost all meaning.

With our new and updated terminology, extensionality can be written more succintly
as follows:

X =Y ifandonlyif: (1) XCY and (2) YCX

Comprehension. When we wrote that sets are collections of the form

{ OBJECTS WITH SOME PROPERTY }
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we made a big concession. We assumed the “axiom schema” of full comprehension,
which can lead us into trouble if we are not careful. Consider for example the set R
named after English philosopher? Bertrand Russel:

R={x:zisaset and = ¢ z},
that is, the set of all elements that do not contain themselves.
Question: Does R contain itself?
Hmm... Okay let’s not worry too much about all that now.
— End of digression —
Let’s distract ourselves with some sets:
(1) N:={0,1,2,...}, yeah that one showed up before...
(2) Z :={0,+1,4£2,...}, the set of integers.
(3) Q, the set of rational numbers (fractions of integers).
(4)

4) R, the set of real numbers (integers followed by infinite decimal expan-
sions).

1.2. Operations on sets. Okay great. So we have a few sets. How can we
build more sets, from the sets we already have?

Definition 1.2.1. Let A and B be sets.

(1) The union of A and B denoted AU B, is defined by:
re€ AUBifandonlyifx € A or x € B.

(2) The intersection of A and B denoted AN B, is defined by:
reANBifandonlyifr € A and x € B.

(3) The relative complement of A and B, denoted A\ B, is defined by:
r€ A\ Bifandonlyifx € A but = ¢ B.

Example 1.2.2. Let P C N be the set of all prime numbers. Then PN E = {2}.

Example 1.2.3. This is all frivolous vocabulary to describe Venn diagrams. We all
remember our Venn diagrams, don’t we? At some point in high-school I'm sure we
all had to draw Venn diagrams proving DeMorgan’s Laws:

2who was joined by Bob Dylan in the club of people that have won a Noble prize in literature.
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(1) X\ (ANB)=(X\A4) U (X\B).
(2) X\ (AUB)=(X\A4)N(X\B).

More generally:

Exercise 1.2.4. Let I be a set and for each i € I, suppose we are given a set A;.

Define:
U Az and ﬂ Ai;
el el

in the obvious way, that is:

:cEUAi if and only if x € A; for some ¢ € [,
iel
and
x € ﬂAi if and only if x € A; for all i € I.

iel
Let X, I and A; (for i € I) be sets. Prove DeMorgan’s laws, i.e:

(1) X\ (Mier 4i) = User (X \ A)).
(2> X\ (Uie[ Ai) = mieI(X \ Ai)

Before we go on with more sets, let’'s go back to square zero. And then move to
square one. And then square two. And then...

1.3. What’s in a number. You may have heard something along the lines of
“set theory acts as a foundation of mathematics” or some other abstract nonsense
to that extent. Let’s adopt this view for a bit. What this means is that in a sense
everything is a set(?!). We will consider very briefly how every natural number is
a set.

If everything is a set, the smallest natural number “should” be the smallest set. So,
let’s define:

0:= 0.
Okay. But then 1 should be the next smallest set, right? Okay great, let’s define:

1:={0}

But at this point, we have done something rather interesting. We have identified 1
with the set consisting of all numbers smaller than it (which is just the set consisting
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of 0, which by the previous definition is just the set consisting of (). But this is a
great idea, let’s do it for 2 as well:

2:={0,1} = {0.{0}}.
If you stop to thing about what we just did for a minute you’ll notice that we have
done a second rather interesting thing! We have identified 2 not just with the set of
numbers smaller than it, but also with the set {@} U{{0}}, that is, with the set that
represents 1 together with the set containing the set that represents 1. So:

2=1U({1}.
Let’s turn this process into a definition:
Definition 1.3.1. Let X be a set. We define the successor of X, denoted X, to
be the set:
Xt :=XU{X}
Explicitly, z € Xt ifand only if z € X or z = X.

So now, suppose we have defined the number n. To define the natural number n + 1
we will simply set n+ 1 :=n", i.e. nT =nU{n}.

Exercise 1.3.2. Write down in full what the natural numbers 3,4 and 5 are.
THEOREM 1.3.3. If m,n € N then m Un = max{m,n}.

PrROOF. We show, by induction on n that if m < n then m C n. The base case
n = 0 is trivial. Suppose that this is true for n and that m < n + 1. Then, either
m<norm=n+1. If m=n+1, then we are done. If m < n, then, by induction
mCmn,somCnU{n}=n+1. O

— End of digression —
1.4. Relations and functions. We will now build up a little bit of vocabulary
which you may have seen before, but it’s important to all be on the same page:
Definition 1.4.1. Let A and B be sets.

(1) The Cartesian product of A and B, denoted by A x B is the set:
(r,y) € Ax Bifand onlyifx € A, y € B.?

3We should probably have some kind of “set theoretic” notion of ordered pair. One that always
does the trick is the following (z,y) := {z,{z,y}}. What does that even mean?
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(2) A relation R from A to B is a subset of A x B.

(3) If R is a relation from A to B we define the domain of R, denoted dom(R),
to be

dom(R) := {a € A : there is some b € B s.t. (a,b) € R},
and the range of R, denoted range(R), to be
range(R) := {b € B : there is some a € A s.t. (a,b) € R}.

(4) If R C A x B is arelation and a € dom(R), then the fibre of a, denoted R,,
is the set:

R,:={be€ B:(a,b) € R}.

(5) A relation R from A to B is a function, if for all x € A there is a unique
y € B such that (z,y) € R. If f is a function from A to B, we may refer to
the range of f as the image of f, and denote it im(f).

So a relation R C A x B is a function if and only if A = dom(R) and, for all a € A,
R, is a singleton. If R C A x B is a relation such that for all a € dom(R) we have
that R, is a singleton, but A # dom(R), then we call R a partial function (it is a
function on the set A’ C A, where A" = dom(R)).

Remark 1.4.2. If R C A x B is a relation, we may write R(a,b) to mean that
(a,b) € R. If f C A x B is a function, we denote this by writing f : A — B, and we
write f(a) = b to mean that (a,b) € f.

Let’s look at an easy way of obtaining new relations from old:
Example 1.4.3. Given a relation R C A x B, and subsets A’ C A, B’ C B we define
the restriction of R to A’ x B’, denoted R [/« p to be:
R laxp:=RN (A" x B).
The next example discusses one of the most common kinds of relations in mathe-

matics. These will occupy our minds a bunch later on, so better introduce them as
fast as possible.

Example 1.4.4. We say that a relation R C A x A is an equivalence relation if
it satisfies the following three conditions:

(1) Reflezivity: For all a € A we have R(a,a).
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(2) Symmetry: For all a,a’ € A, if we have that R(a,a’) then we have that
R(d',a).

(3) Transitivity: For all a,d’,a” € A if we have that R(a,d’) and R(a’,a”) then
we have that R(a,a”).

For a € A, we write [a|g for the set {b € A : R(a,b)}, which we call the equivalence
class of a.

Equivalence relations are useful, because they allow us to quotient things. Indeed,
let A be a set and R an equivalence relation on A. Then, there is a set A/ R, defined
as follows:

A/R :={[a]g :a € A}.
We call a a representative of the equivalence class [a|g. Equivalence classes can
(and usually do) have many representatives.

Exercise 1.4.5. Let A be a set and R an equivalence relation on A. Prove that
R(a,b) if and only if [a|g = [b]r.

If A and B are sets, then A® is the set of all functions from B to A, i.e.
AP = {f C B x A: fis a function}.
Some people denote this by Z A, but I think this notation is rather obnoxious.*
Definition 1.4.6. A function f: A — B is called:
(1) ingective if for all b € B there is at most one a € A such that f(a) = b.

(2) surjective if for all b € B there at least one a € A such that f(a) = b.

(3) bijective if it is both injective and surjective.

Given any relation R C A x B, we can define a relation R~! C B x A by:
R™Y(b,a) if and only if R(a,b).

Remark 1.4.7. If f : A — B is a bijective function, then for all a € A there is a
unique b € B such that f(a) = b. In this case, f~!, from above, is a function. We
call f~! the inverse function of f.

Exercise 1.4.8. Suppose that f: A — B is a bijective function. Check that:
(1) For all a € A we have that f~!(f(a)) = a.

1 have strong opinions and I’'m not ashamed of that.



1. PRETTY NAIVE SET THEORY 9

(2) For all b € B we have that f(f~(b)) = b.

Definition 1.4.9. The powerset of a set A, denoted P(A), is defined by:
x € P(A) if and only if z C A.

Remark 1.4.10. For all sets A, § € P(A).

Exercise 1.4.11. Let A be a set. Show that there is a bijection between P(A) and
245 (Recall that 2 = {0,1} so 24 = {0,1}* is the set of all functions from A to

{0,1}.)

1.5. Infinities come in different sizes. Before we define what the size of a
set is, we should figure out when two sets have the same size. For finite sets we
definitely understand this:

Two finite sets have the same size if they have the same number of elements.

Yeah, I also didn’t think this course would be so deep! But wait... there is really
a point here. A set X has n elements, if and only if there is a bijection between
X and n (remember, or if you skipped Section 1.3, quickly learn that from now
onn ={0,...,n—1}). We don’t know what the infinite analogues of the natural
numbers are (yet) , but, here is the point. If two finite sets A and B have the same
number of elements, then there is some n € N and bijections:

f:A—={0,....,.n—1}and g: B—{0,...,n—1}

Thus, there is a bijection from g~'o f : A — B. This is good enough to be our
starting definition:

Definition 1.5.1. We say that two sets A and B are equinumerous® if there is a
bijection f : A — B. We denote this by A ~ Y. We say that A is subnumerous’ to
B if there is some injective function f : A — B, and denote this by A < B.

For finite sets, this just says that A and B are equinumerous if and only if they
have the same number of elements,® which is great, as this is what we wanted to
generalise. What does it say for arbitrary sets? Well...

5The name Potenzmenge (“powerset”) appears to come form Untersuchungen tber die Grundlagen
der Mengenlehre (1908) by Ernst Zermelo. For example, in 1906, Gerhard Hessenberg used the name
Menge der Teilmengen, i.e. set of subsets. I hope this exercise justifies the naming convention.
6BEqui-” as in “equal” and “-numerous” as in “number”.

I wonder what the etymology of “subnumerous” is...

8The notion of subnumerosity is also pretty obviously an extension of what it means for a finite set
to be of smaller size than another finite set.
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Example 1.5.2. N and Z are equinumerous. For example, the function f: N — 7Z
given by:
5 if x is even;
T S e
—5— it xis odd.

is a bijection.

So it really doesn’t make all that much sense to ask that two infinite sets have “the
same number of elements”, but it’s close enough:

Exercise 1.5.3. Prove that ~ is an equivalence relation.’

The main idea behind all of this is that we would somehow like to think of the “size”
of a set A as the equivalence class of A modulo the equivalence relation ~. This is
not so simple (first of all, because there is no set of all sets, and secondly because
there is no guarantee that given two sets one will be subnumerous to the other).

Exercise 1.5.4. Show that N ~ N x N. Deduce that N ~ Q.
[Hint. The following zig-zag idea may be helpful:
)
<1,3>/(1.;1

-

(0,0) — (0,1) (0,2) — (0,3 (0,4) — (0,5)

) —
>/

(1.0)

|

(2,0)

(1,1) (1,2)

21 (2,2) (2,3)

INANAN
VAN
AN

(3,0) (3.1) (3,2)

e

(4,0) (4,1)

(5.0)

Remember, the goal is to define a bijection from N to N x N. |

All of this begs the obvious question:
Question. What about N and R?

THEOREM 1.5.5 (Cantor). Let A be a set. There is no surjective function from A to
P(A). In particular A & P(A).

91f you study more set theory you may learn that this exercise is “formally” wrong, at least according
to some people. I don’t really care.
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The proof is often referred to as Cantor’s diagonal argument — we’ve actually
kind of encountered this kind of logic already in Russel’s paradox. Two of the most
important proofs in this course will involve funky variations on diagonal arguments,
so it’s perhaps rather important to understand the grandfather of them all.

PROOF OF CANTOR'S THEOREM, TAKE 1. Let B := {z € A : z ¢ f(x)}.'°
Suppose towards a contradiction that f(x) = B for some x € X. Then we have that
x € B if and only if x ¢ B, a contradiction. U

This proof was like very easy, but I claim that we actually showed a bunch of cool
stuff:

Corollaries of Cantor’s theorem

(1) SOME INFINITIES ARE BIGGER THAN OTHERS: Well, we did show that
there are infinite sets which are not equinumerous. For any set A, we have
that A is subnumerous to P(A) [Why?] but by Cantor’s theorem they are
not equinumerous. Let’s start with a “small-ish” infinite set, say N:

N<PN)<PPN)) <PP(PN))) <---,
where A < B means A <X B and A # B.

(2) THERE IS NO SET OF ALL SETS: Suppose that V' is “the set of all sets”. Since
any set of subsets of V' is a set, P(V) C V , so P(V) = V, contradicting
Cantor’s theorem.

(3) THERE ARE MORE REAL NUMBERS THAN NATURALS: Remember that R
is the set of all integers followed by infinite binary expansions:

n.apayasas . . . ,a; € {0,1}.
The proof of Cantor’s theorem may have gone a bit fast. Can we try it again?

PROOF OF CANTOR’S THEOREM, TAKE 2. Let’s just prove that the set 2V of
infinite 0-1 sequences is not in bijection with N. Let f : N — {0,1}" be any map.

0T his is the diagonalisation part of the proof (see TAKE 2 and the discussion after it, in the next
page).
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We can just write down the elements in the image of f, as follows:
f(1) = ajasazay . ..al ...
f(2) = ajasa3ai...a> ...

f(3) =ddadaial .. .a® ...

SwW3INn I

f(n) =atasayay ...a)

nee-

where o/ € {0,1}, for all i, j € N.

Now consider the following element of {0, 1}:

Z_)Z:blbgb3...bn...,

where:
b, = 0 %fagzl
1 ifal =0.

So b # f(n), for each n € N. Indeed, f(n) =a}a}...a"...,b="by...b,... and by
definition:

b, # a,,.
So, the function we started with was not a bijection. O

I hope we all now (literally) see why this is called a diagonal argument. We always
look at the n-th coordinate of f(n). How does this proof compare to the first proof
that we gave? Well, we can view f(n) as a subset of N, namely f(n) = {i € N :
f(n); = 1}, where f(n); = a?. With this in mind, b is the set {i € N : f(i); =
0} ={i e N:i¢ f(i)} (cf. with TAKE 1 of the proof). A somewhat subtle point
emphasised by the TAKE 1 argument is that we did not need to assume that the set
we started with was countable (see the next definition).

Definition 1.5.6. A set A is countable if it is subnumerous to N. If N is not
subnumerous to A, we say that A is finite. If A is not countable, we say that it is
uncountable.

By definition, N is countable and by our discussion above, R is uncountable. The

intuition is that a set is countable if we can write its elements as a “nice” list of the
form 0,1,2,3,....

If you're curious individuals, maybe at this point you're asking yourselves:
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Question. How much bigger than N is R?

Cantor-Bernstein. We will briefly discuss at the end of this section, that this
is a fool’s errand, but for now, we want to define the infinite analogues of natural
numbers (the ordinals) and their corresponding sizes (the cardinals).!! First, let’s
show that < behaves kind of like what we intuitively understand an order to be, and
then let’s define what an order actually is.

THEOREM 1.5.7 (Cantor-Bernstein). Let A and B be sets. If A = B and B X A
then A ~ B.

PROOF. Recall that A < B means that there is some injective map f : A — B
and that B < A means that there is some injective map g : B — A. We want to
show that A ~ B, i.e. that there is a bijection from A to B.

It suffices to show that im(f) ~ B (since by definition, A ~ im(f) and you have
shown that ~ is transitive), so without loss of generality, we may assume that We
can replace A =im(f) C B.

Let C :={g"(z) : x € B\ A}, where
g9"(x) =gogo---og(x).

TV
n times

Define:
h:B— A

by g(b) ¥fb€C
b itbe B\C

It is easy to see that h is injective (since the composition of injective functions is
injective), so we need only show that it is surjective. But indeed, if x € A, then either
x € ANC in which case z = g(y) for some y € C, and if x ¢ ¢ then h(z) =2z. O

— End of Digression —

HAs we will see, this distinction disappears in the finite case.
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Homework 1
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With that all out of the way, we’ll go into another digression, which will be followed
by another digression. In fact:

This is formally as much of this part of the course as we will cover in class.

I got rather carried away when I was writing these notes, but whatever... The rest
is digression after digression.!?

1.6. Ordinals. By the end of this little section, we will have uncovered the key
properties that make numbers so good at listing things by (what a daft statement)
— and through this we will be able to define their infinite counterparts (ah he was
making a point). We will have to be a bit abstract at the beginning.

Definition 1.6.1. A partial order on a set X is a relation <C X x X satisfying the
following properties:
(1) Irreflexivity: For all z € X, z £ =.
(2) Transitivity: For all x,y,z € X, if z < y and y < z, then z < z.
We say that < is a total order, if, in addition we have the following:
(3) Trichotomy: For all x,y € X, if z £y and y £ z, then x = y.
Example 1.6.2. Let X be a set. Then, C (where A C B if and only if A C B

and A # B, for all A, B € P(X)) is a partial order on P(X). If X has at least two
elements, then this is not a total order.

Example 1.6.3. Let n be a natural number, viewed as a set. Define a relation <
onn=14{0,...,n—1} by x < y if and only if x € y (recall that the elements of n are
themselves sets of natural numbers). For example, on 2 = {0, 1} we have that:

0el,1¢0.
More generally:

THEOREM 1.6.4. Let n € N and m,m’ € n, then, the following are equivalent:
(1) mem'.

(2) m <m’ (in the usual order of natural numbers).

12¥eah, I suck at keeping stories short. I know.
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PROOF. We show this by induction. It is obvious for () (as it has no elements! I
will keep stressing this). So suppose that it is true for n € N. We need to show that
it is true for n+1 = nU{n}. Suppose that m, m’ € n+ 1. Then, there are two cases
to consider:

e Case 1. Both m, m’ € n. In this case, we are done, by induction.
e Case 2. m € n and m’ = n. In this case, we are done, by assumption.

U

Exercise 1.6.5. Let (X, <) be a poset.!® Define a new relation <C X x X as
follows:

rXyifandonlyif x <y or z =y.
(1) Show that < satisfies the following:
(a) Reflezivity: For all z € X, x < x.
(b) Antisymmetry: For all x,y € X, if x <y and y < = then = = y.
(¢) Transitivity: For all z,y,z € X, if x <y and y < z, then x < 2.

(2) Suppose that X is a set and < is a binary relation (i.e. a subset of X x X
satisfying (a)-(c) from above. Show that the relation <1 defined by:

x <y if and only if x <y and x # y
is a partial order on X.

By the exercise above, I will not pay too much attention on whether my partial
orders allow equality or not (it should be clear from the notation though).

Definition 1.6.6. Let (X, <) be a poset and ¥ C X. We say that y € YV is a
minimal element of Y if there is no ¢y’ € Y such that 4/ < y. We say that y € Y is a
mazimal element of Y if there is no ¥’ € Y such that y < 3/. We call x € X a lower
(resp. upper) bound for Y if for all y € Y we have that © < y (resp. y < x).
Exercise 1.6.7. Let (X, <) be a poset and Y C X. Define the following:

(1) y € Y is a smallest element of Y if for all y € Y we have that y < ¢/'.

(2) y € Y is a largest element of Y if for all ¥ € Y we have that ¢/ < y.

13 This is slang for X is a set, < is a partial order on X
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Prove that smallest and largest elements of a subset of a poset (if they exist) are
unique.** Give examples of why this need not be the case for minimal and maximal
elements.

Definition 1.6.8. We say that a poset (X, <) is well-founded if every non-empty
subset of X has a minimal element. We say that (X, <) is a well-order if it is a
well-founded total order.

Example 1.6.9. Here are some examples and non-examples:
(1) Every natural number (in the sense of Section 1.3) is well-ordered.
(2) (N, <) is well-ordered.
(3) The total order (Z, <) is not well-founded.

The third example above, essentially generalises to allow us to characterise all the
well-founded partial orders. First, a small definition. We say that a subset C' C X of
a poset (X, <) is a chain if (C, <[¢xc¢) is a total order. A chain is called descending
if it has no minimal (i.e. smallest) element.

THEOREM 1.6.10. Let (X, <) be a poset. Then, the following are equivalent:
(1) (X, <) is well-founded.
(2) There are no descending chains in (X, <).

PROOF.

(1) = (2). Suppose that C' C X is a descending chain in X. Then C has no
minimal element.

(2) = (1). Suppose that (X, <) is not well-founded. Define a map:
f: X —=PX)
r—{ye X y<uz}

Since X is not well-founded, there is some Y C X which has no minimal element.
Let yo € Y. Then, by assumption, yy is not minimal in Y, so there is some y; € YV
such that y; < yo, i.e. some y; € f(yo) NY. But then, y; € Y so it is not minimal,
so there is some yo € f(y1) NY = f(yo) N f(y1) NY. Continuing like this, we can
construct for each n € N some y,, such that y, € Y N(,_,, f(:). Thus {yo,y1,...,}
is a descending chain in X. O

MThus we may refer to them as the smallest and largest elements of said subset.
15Thus we may not refer to them as the minimal and maximal elements.
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Exercise 1.6.11. The proof of Theorem 1.6.10 is written rather informally. Write
out the inductive proof carefully.

Exercise 1.6.12. Show that the following are equivalent for a set X:

(1) X is equinumerous to some natural number n € N.

(2) P(X) is well-founded.

Now that we understand well-orders rather well, let’s try to single out the unique
property of natural numbers we want to extend to infinite sets:

Definition 1.6.13. A set X is transitive if for all x+ € X we have that x C X.
Explicitly, this says that for all z € X, it y € x then y € X.

Wait, what? Yes, this is admittedly very confusing. But let’s go back to our friends
the natural numbers:

0=0, 1={0}, 2=1{0,1}, 3=1{0,1,2}, 4=1{0,1,2,3},...,
n={0,1,2,....n—1},...

Let’s look at 2 first. Suppose that z € 2. Thenx =0 or x = 1. If x = 0, then x = (),
so x C 2 (the empty set is a subset of every set). On the other hand, if = 1 then
x = {0} and {0} C {0,1}. More generally:

THEOREM 1.6.14. Fvery natural number is a transitive set.

PROOF. We prove this by induction. Obviously @ is transitive (it has no ele-
ments!). So, suppose that n is transitive. We have to show that n + 1 is transitive.
By definition:

n+1=nU{n}.
So, if x € n + 1 then either x € n or x = n. On the one hand if € n then x C n,
by induction. On the other hand, if x = n then, for all y € x we have that y € n so
yenU{nt=n+1. O

Definition 1.6.15. A set X is an ordinal if it is transitive, and the relation < given
by:
x <y if an only if x € y,

is a total order on X.
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So if we put together Theorems 1.6.4 and 1.6.14 we have actually shown the following:

Corollary 1.6.16. Every natural number is an ordinal.

Let’s start building more ordinals. First, we will show that there is at least one
infinite ordinal:

THEOREM 1.6.17. The set of all natural numbers'® is an ordinal.

PROOF. We need to show that N is transitive and that € is a total order on N.

e TRANSITIVE: First, we will show that if n € N then n C N, by induction.
This is obvious when n = ) (for the n-th time, () is a subset of every set).
So we need to show that forn+1€ N, n+1CN. But n+1=nU{n}. By
induction, we know that n C N and by assumption, we know that n € N,
sonU{n} CN.

e TOTALLY ORDERED BY €: We have to show that for all m,n € Nifn ¢ m
and m ¢ n then m = n. Let m' = mUn = max{m, n} (where the maximum
is taken in the usual order of natural numbers, by Theorem 1.3.3). Then, by
definition, m,n € m+ 1 and, by Theorem 1.6.4, € is a total order on m + 1.

O

Okay great we have at least one infinite ordinal, and you should be asking yourselves
now. Can we build more?

Proposition 1.6.18. Let a be an ordinal. Then ot is an ordinal.
Exercise 1.6.19. Prove Proposition 1.6.18

So N is an ordinal, and so is N* = NU{N} and so is (N*)* = NU{N} U{NU{N}},

etc.

Exercise 1.6.20. Prove that N is a countable set. More generally, prove that if a
is an infinite ordinal, then o and a* are equinumerous.

160kay, we haven’t formally explained why the set of natural numbers is a set, but trust me, for
now, it is one.
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Okay that’s all good and well, but can we build uncountable ordinals?

Well... yes, I know we're all excited, but let’s try to be a bit more patient. We’ll get
there, but it may take a minute.

Lemma 1.6.21. Let o, 8 be ordinals. Then:
(1) a ¢ a.

(2) If x € « then x is an ordinal.
(8) B C «if and only if 5 € a or § = «.

PROOF.

(1) By definition, (a, €) is a partial order. Thus, for all 5 € a we have that
B ¢ [, by irreflexivity. Suppose that a € a. Then « ¢ «a, a contradiction.

(2) Suppose that x € . Then = C «, S0 €[, is a well-order. To see that x
is transitive, suppose that y € z. We have to show that y C x, so suppose
that z € y, then z,y € a and by transitivity of € we have that z € z.

(3) On the one hand, suppose that § C «. Let x € a\ # be minimal. By
minimality assumption, if ¥y € « is such that y € x, then y € 5. On the
other hand, if y € 8 then y € x (otherwise x € y, since € is a total order
on «), and thus z € 3, contradicting the assumption that x € o\ 5. Thus
8 = x € a. Conversely, suppose that § € « then, since « is transitive,
£ C «a, and we are done.

O
Exercise 1.6.22. Let X be a non-empty set of ordinals. Prove that (| X := () .y«
is the smallest element of X.
[Hint. First, prove that ()X is an ordinal. Then, show that (X € X, using
Lemma 1.6.21(3).]

The intuition behind the next theorem is that € behaves like a total order around
ordinals:

THEOREM 1.6.23. Let o and (8 be ordinals. Then, exactly one of the following holds:
Daep; (2Qa=p (2)fea
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PROOF. Let X = {«, f}. By Exercise 1.6.22, NX = a N f is an ordinal, and it
is the least of a and . If « N 8 = a, then o C 8 so by Lemma 1.6.21(3), « € § or
a = (. Similarly, if a N g = B, then a« = § or § € a. The fact that exactly one of
the three cases holds is immediate because € is a partial order. 0

As is usual in mathematics, once we have defined some class of objects and have some
examples of objects in the class, we want general ways of constructing new objects
in the class. For ordinals, we have shown that successors of ordinals , elements of
ordinals, and intersections of ordinals are all ordinals. The next proposition allows
us to build even bigger ordinals:

Proposition 1.6.24. Let X be a set of ordinals. Then|J X = J,cx « is an ordinal.

PROOF. Observe that the union of transitive sets is transitive (if y € [J X then
y € x for some x € X, but z is transitive, so y C z, so y C |J X). Since | J X consists
of ordinals, by Theorem 1.6.23, € is a total order on | J X. Let Y C X be non-empty.
Then (Y is the smallest element of Y by Exercise 1.6.22. O

Exercise 1.6.25. Prove that if X is a set of ordinals, then, for all ordinals -, if
v € |JX then there is some « € X such that v € a.

Definition 1.6.26. Let (X, <x) and (Y, <y) be two partial orders. We say that
they are order-isomorphic if there is some bijection f : X — Y such that:

x <x 2’ if and only if f(z) <y f(2').

The next theorem is crucial. Indeed, part of the point of why we’ve been doing all of
this abstract work is that putting Theorem 1.6.27 together with the Theorem 1.6.23
and the well-ordering principle (see next section) will allow us to define an honest
to god way of sizing up infinite sets.

THEOREM 1.6.27. Fvery well-ordered set is order-isomorphic to a unique ordinal.
PRrROOF. Optional HW. O
And now for the main course (somewhat due to Hartogs):

THEOREM 1.6.28 (Baby Hartogs). Uncountable ordinals exist.
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PROOF. Let X be the set of all well-orders on N (i.e. X consists of all subsets of

N x N which are well-founded total orders). Define an equivalence relation ~ on X
by

<1~y if and only if there is an order-isomorphism from (N, <;) to (N, <5)
Exercise 1.6.29. Prove that ~ is an equivalence relation.

Let Y = X/ ~. For all [<]. € Y there is, by Theorem 1.6.27, a unique countable
ordinal ar4 which is order-isomorphic with (N, <). Let Z be the set of all such ordinals
(i.e. Z is a set consisting of countable ordinals, each of which is a representative of
an equivalence class of ~).

By Proposition 1.6.24, | J Z is an ordinal. By Exercise 1.6.25, every ordinal a < ( is
order-isomorphic to some well-ordering of N.

We claim that ¢ = |JZ is uncountable. Suppose not. Then (™ would also be
countable (by Exercise 1.6.20), but if (* were countable, then by definition, we
would have an injection f : (* — N. Clearly, (" is infinite, so there is an injection
g : N — (", and thus by Cantor-Bernstein there is a bijection h : (* — N. But then,
define an order < on N by

n < m if and only if g~'(n) € g~'(m)
This is a well-order, so (* is order-isomorphic to a well-order on N, and hence (* € (.
This is a contradiction.!” O
Let’s list some of the ordinals we have seen so far:

e Natural numbers are ordinals. For n € N\ {0}, the ordinal n is of the form
m + 1, for some m € N.

e The set of all natural numbers is an ordinal.

e Nt (NT)™), etc. are all ordinals. Let’s write w + n for the set obtained by
iterating (-)* on N, n times.

° UneN(w + n) is an ordinal. Let’s call this w + w.

o U,en(w 4w +n) is an ordinal. Let’s call this set w + w + w. Similarly, we

can build w+ -+ +w), forn € N
—_———

n times

I"This is the easiest proof of Hartogs we can give with the assumptions we have so far. Once we
learn about the well-ordering principle, we will be able to give a one-line proof.
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o U en(w+ - +w). Let’s call this set w x w.
— —

n times

e We can keep going ad infinitum (quite literally).

The keen eyed amongst you may have seen already that ordinals feel like they come
in two different flavours. They are either of the form ot for some ordinal « or they
are a(n ordinal-indexed) union of smaller ordinals:

Definition 1.6.30. An ordinal of the form a* is called a successor ordinal. If \ is
an ordinal that is not a successor ordinal, then we say that A is a limit ordinal.

Example 1.6.31. N is an ordinal. If it were a successor ordinal, then it would be of
the form o™, for some o € N. But, for every a € N we know that o™ is finite, which
is a contradiction. Thus, N is a limit ordinal.

The next exercise justifies the discussion before Definition 1.6.30:
Exercise 1.6.32. Let A be a non-empty ordinal. Prove that the following are equiv-
alent:

(1) X is a limit ordinal.
(2) A=U,crp-
Exercise 1.6.33. Prove that N is the smallest non-empty limit ordinal.

We kinda sorta saw how to multiply ordinals (ish). The last exercise in this section
introduces the concept of ordinal exponentiation:

Exercise 1.6.34 (Baby Ordinal Exponentiation). Let (X, <x) and (Y, <y) be to-
tally ordered sets, and assume that X admits a smallest element 0 € X. Let X
be the set of all functions from Y to X of finite support, that is, for all f € X®)
we have

supp(f) :={y €Y : f(y) # 0}

is finite. Define a relation < on X) by
f < g if and only if
there is some y € Y s.t. f(y) <x g(y) and f(y') = g(¢y) if ¥/ <y v.
Prove that:
(1) < is a total order on X,

(2) If (X, <x) and (Y, <y) are both well-founded then so is (X, <).
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1.7. The Axiom of Choice. We previously defined the Cartesian product of
two sets. This, of course, allows us to define the Cartesian product of finitely many
sets, by induction:

A()XAlXAQ:(AQXAl)XAQ,
and we already know what Ay x A; is. More generally:

Ag X Ay X -+ X Ap X Apg1 = (Ag X -+ X Ap) X Apia.

But what about Cartesian products of infinitely many sets? The induction thing we
pulled off above won’t work anymore, so we have to be more clever. Let’s see what’s
so special about the Cartesian product of two sets:

Ao X Al = {(ao,al) tag € Ao,a1 € Al},
so in a stupid sense, every element of Ag X A; is just a function from {0, 1} to AgU A,

such that f(0) € Ap and f(1) € A, and these are all the elements of Ay x A;. Right?
Functions from {0, 1} to a set X are just sets {(0,x), (1,2)}, for z,z € X.

This is kind of silly, but really powerful. Indeed, if I is any set and (X;);c; some
family of sets, we define

I[x = {f:]—>U:f(i)eXiforalliEI}.
el i€l

By our discussion above, when [ is finite, this is nothing new, but now we can talk
about arbitrary products of sets.

Axiom of Choice: The product of a family of non-empty sets is non-empty.
This innocuous statement has many many consequences. The next theorem (which
we won’t prove here) is really fundamental:
THEOREM 1.7.1. The following are equivalent:*®
(1) The Aziom of Choice.
(2) The Well-ordering Principle: Every set can be well-ordered."

(3) Zorn’s Lemma: Let (X, <) be a poset. If every chain in X has an upper
bound in X then X has a maximal element.

PROOF (SKETCH).

18Assuming the axioms of Zermelo-Fraenkel set theory (which you can google if you want)
19This means that for every set X there is a binary relation < on X which is a well-order.
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“The Axiom of Choice is obviously true, the Well-ordering principle obviously false,
and who can tell about Zorn’s lemma?”
— J. Bona

O

1.8. Cardinals. Now that we have orders, we’d like to discuss their “sizes”. As
we saw previously, there are many infinite countable ordinals, but N is the smallest
one. Somehow we want to make this canonical:

Definition 1.8.1. An ordinal is a cardinal if it’s not equinumerous to any smaller
ordinal.

Example 1.8.2. Any finite ordinal is a cardinal. N is also a cardinal. When con-
sidered as a cardinal, I will sometimes denote it by Xy. And since we’re here, when
considered as an ordinal I will sometimes denote it by w. I already pulled this trick
in a previous paragraph.

Exercise 1.8.3. If « is an infinite ordinal, then a™ is not a cardinal. [Hint. Prove
that a and o' are equinumerous.|

Proposition 1.8.4. Any set X is equinumerous to a unique cardinal.

PROOF. By the well-ordering principle, every set is equinumerous to an ordinal
a. Let f < a be minimal such that § is equinumerous to . Then [ is a cardinal
and is in bijection with X. Uniqueness follows by minimality. U

We will write | X| for the unique cardinal that X is equinumerous to. We call | X|
the cardinality of X.

Remark 1.8.5. If we return to our previous definition of countability, we see that:
X is countable if and only if | X| < Ny, and X is finite if and only if | X| < 8.
Lemma 1.8.6. Let X and Y be non-empty sets. Then, the following are equivalent:
(1) [X] < Y]
(2) There is an injective function f: X — Y.

(8) There is a surjective function g : Y — X.
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PROOF.

(1) = (2): Suppose that | X| = k < A = |Y'|. Then, there are bijections f : X — &,
g : Y — X and an injection h : K — . Thus we have an injection g tohof: X — Y.

(2) = (3): Let f: X — Y be an injective map. Fix some zy € X. Define a map:
g:Y =X
x if im
y = 0_1 y ¢ ‘ (f)
f~'y) otherwise.
This is surjective.

(3) = (1): Let f:Y — X be a surjective map. Then, there is a surjective map
g: A — Kk, where A = |Y| and k = | X|. Given « € &, there is a minimal o, € A
such that g(a,,) = « (since A is an ordinal), so set f(a) = a,,. Then f: k — Aisan
injection, showing that k < A. 0

Going back to Cantor’s theorem, we can show that there is no largest cardinal.
Indeed, for any cardinal A, |[P(\)| > A.

Definition 1.8.7. Let k be a cardinal. Then, we define the cardinal successor of k,
denoted k + 1 to be the least element of the set

{A: A >k is a cardinal, and A < |P(k)|}.

We can now define, for any ordinal « a cardinal X, as follows:
(1) Ry :=w
(2) Nor =N, + 1
(3) Ry ==, Ny, when A is a limit ordinal.

To close this little discussion, recall that in Exercise 1.6.34 we kind of defined ordinal
exponentiation. For cardinals the situation is easier:
K = K.
THEOREM 1.8.8. Every infinite cardinal is of the form R, for some «.
PROOF. Optional HW. O

Remark 1.8.9. By Cantor’s theorem |R| = 2% and we know that ®; < 2% since
N; is, by definition, the smallest uncountable cardinal. It follows from the previous
theorem that 2% = X, for some a. But which o?
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There’s not too much we can prove about 2% without having to strengthen (whatever
that means) our set theory. For instance:

FACT. We can prove that 2% # RX.2°

The Continuum Hypothesis is the statement:
2% = N;.

It turns out, that this statement is independent of the axioms of set theory. This
will make more sense later, but let’s record it here for now:

There are models of set theory in which the continuum hypothesis holds and
models of set theory in which the continuum hypothesis does not hold.

20But this will be done in another course.
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Optional Homework
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