Here’s the proof I skipped during lectures — we will discuss it a bit after we finish
mcompleteness, but it will not be examinable.

Recall that this is what we’re after:

Proposition 2.1.5. Let f € F, and g € Fp2 be representable functions. Then, the
function h defined by recursion from f and g, by:

f(xla"wwk) ifl‘k+120
g(x1, .. T, e — L A(z1, ..., 2k, 21 — 1)) otherwise

h(xb s 7$k7xk+1) - {

1s also representable. In particular, the set of representable functions contains all
primitive recursive functions.

We will start by introducing a clever function, G6del’s function, which we will
denote by [, whose role will be to uniformly, recursiwvely, and representably code
finite sequences of natural numbers.

Lemma 1. There is a total function:
B:N* =N
satisfying the following:
(1) B is recursive.
(2) B is representable.

(3) For all p € N and all sequences (ny,...,n,) € NP there are a,b € N such
that:

For alli € {1,...,p} we have 5(i,a,b) = n,.

Of course, once we have shown that every total recursive function is representable,
then using the binary component function (from Chapter 5) and just the bounded pu-
operator, we would have a good (i.e. primitive recursive) way of coding and decoding
sequences of natural numbers. The “unfortunate” thing is that, at the moment, we
don’t know that every total recursive function is representable. This should clue you
in that the representability of 8 is what we will have to worry about.

To prove Lemma 1, we will need the Chinese Remainder Theorem. Before I state it,
let’s recall some terminology:

o Let x,y € N. We say that = and y are co-prime if their greatest common
divisor is 1 (i.e. there are no prime numbers that divide both x and y).
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o Let z,y € Nand z € No;. We say that x is congruent to ymodulo z, denoted
r =y (mod z), if the difference of x and y is divisible by z (equivalently, if
they leave the same remainder when divided by z).

Here’s a basic number theory fact, that we will not prove:!

FacT (Bézout’s identity). For all x,y € N there are a,b € Z such that:
ax + by = ged(x, y).

Given Bézout’s identity:

THEOREM. Let (by,...,b,) € N2, be a sequence of pairwise co-prime natural numbers
and (ay, ..., a,) a sequence of natural numbers. Then, there is some x© € N such that:

r=a; (modb)

for all i <mn.

PROOF. We argue by induction on n. If n = 1, then we just take x = a; and
are done with it. Now, let’s do the case n = 2 to warm up.? By Bézout we can find
some 1, Uy € 7 such that:

u1by + ugby = 1.
Multiplying through by (ay — a;) we get:
(ag — ay)uiby + (az — ar)ugby = (az — ay).
which can be rewritten as:
(ag — ay)uiby + a1 = (a1 — az)ugby + as.

Call this number x. Then, since x = (as — a1 )uib; +a; we have that z = a; (mod by)
and since x = (a; — as)usbs + as we have that © = as (mod by), so we won.

Now the argument for the inductive step we essentially repeat this argument observ-
ing that:

ng(bl X X bnybn—i—l) = 17
and this concludes the proof. 0

Okay, given this:
f you know about Euclid’s algorithm then this should be relatively straightforward for you.

2The case n = 2 is what people usually call the Chinese Remainder Theorem. As we will see below,
the argument for n = 2 is really all one needs.
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PROOF OF LEMMA 1. We define (3(i,a,b) to be the remainder of the Euclidean
division of b by a x (i 4+ 1) 4+ 1. This is representable, by the formula ¢(x, y1, ye, y3):

(32)(ys = (2 X S(ya xS y1) + ) A < S(ya x S y1)

and it is obviously recursive (by the Church-Turing thesis, if you're not feeling ad-
venturous).

Now, say we are given a sequence (ni,...,n,) € NP. We need to find some a,b € N
such that for all i € {1,...,p} we have:
B(i,a,b) = n,.

To find a, start by picking some m € Ny, 1 so that m! > n; for all 7, and set a = m/!.
So what? Well... For all i € {1,...,p}, we have that b; = a(i + 1) + 1 are relatively
coprime [This is not immediately immediate, so, Exercise]. Now, by the Chinese
Remainder Theorem we can find some x such that:

r=a; (modb;)

for all 7. Since:
n<a<a(i+1)+1
we have that 3(i, a,b) = n;. O

Now that we have our Gddel function, let’s prove our main result.

PROOF. To express that:

y=h(z1,..., 08 Tri1)
we need to write formulas saying that there is a sequence z(0), z(1), ..., z(24+1) such
that:
2(0) = f(xy,...,zx), and z(xg11) =y,
and

And, how do we say that there is such a sequence... Given our great and good
function [ we just need to say that there exist two integers a and b which code this
sequence (by means of the function §). Say that f and g are represented by formulas:

¢($ayl7 s 7yk) and ¢($ayl7 s 7yk+2)7

respectively, and suppose that § is represented by the formula x(z,y1,y2,ys3). Ob-
serve that 3 is also represented by the formula ¢'(x, y1, Y2, y3), given by:

X(@, Y1, 92, y3) A (V2) (2 < 2 — =X (2,91, Y2, ¥3)) -
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This is a triviality that will make our lives easier, since for all M E Tpy,, if v e M
is a standard element such that:

ME X' (v,a,b,c),

for any a,b,c € M, then there is no other element of M (standard or not) which
satisfies x/(v', a, b, ¢). Okay, with this out of the way, the desired formula is:

(322)(323) | (F21) (X' (21, L, 22, 23) A D21, 91, - - -5 Yi))

AX' (2, yps1 £ 1, 22, 23)
A (Vzg) [24 < Yr1 = (325)3(26) [X (25, S 24, 22, 21) A X (26, S S 24, 21, 22)

AN ¢(ZG, Y1y Yk, 24, Z5)]:|

That’s a mouthful... A long and tedious check (it’d probably be enough to understand
how to read the formula above) should tell us that this represents h, but I'm too
afraid I've messed some indexing up somewhere to write it all out. 0



