CHAPTER 6

Okay it’s undecidable, but it can’t be incomplete too (Cont’d)

3. What do you mean the dirty work starts now?
Let’s try to compose ourselves, we have a goal:

There is an algorithm, which eventually prints out every universally valid
L peano-formula.

In posh words:
The set of all universally valid £ p.qno-formulas is recursively enumerable.
We’ll get there in several steps:

e Step 1. Code any Lpg.no-formula into a natural number, in an effective
way.

e Step 2. Prove that the set of axioms of our proof system is a primitive
recursive set.

e Step 3. Code any t,, .. proof into a natural number, in an efficient way.

e Step 4. Prove that the set of derivations of formulas from Tp4 (or any
recursive theory) is primitive recursive.

e Step 5. Use the basic facts about recursively enumerable sets we proved in
the previous chapter to conclude.

To get there, we will use our sweet primitive recursive coding functions tuple and
untuple and many more tools we developed earlier on.

Before we get into it though, you’ll have to excuse the following lemma, which looks
very technical, because it is:

Lemma 3.0.1 (Multiple recursion). Let p,n € N and suppose that we are given
primitive recursive functions ki, ...k, € Fi, g € Fp, and h € Fpinin- If, for all
y > 0 we have that k;(y) < y, then the function f defined by:

o f(0,21,...,2p) = g(z1,...,7,).

2 CHAPTER 6. OKAY IT’S UNDECIDABLE, BUT IT CAN'T BE INCOMPLETE TOO (CONT’D)

o fly,z1,...,xp) =h(y, f(kr(y),z1, ... xp), - oy f(kn(Y), 1, 2p), @1, oy Tp)

1S primitive recursive.

What’s the point here? Well, in our original definition of recursive definitions, we
required that the argument in which we are defining the function by recursion de-
creased on every step. This doesn’t quite fit our definition of recursion!

PROOF (SKETCH). A formal proof wouldn’t be so hard. We’ve developed enough
coding to using the tools of coding of sequences we’ve defined. Alternatively, invok-
ing Church’s thesis, it’s enough to write pseudocode for a computer program that
computes f! Indeed, this is an easy exercise. O

Great, now we can start.

3.1. Coding of formulas. Remember how, a while back we spent loads of time
coding register machines into integers? Now we’ll pull a similar trick, but we’ll code
L peano-formulas into integers.

Our new brilliant idea is to code a term ¢ as a triple of natural number (a, b, ¢) where:

e The third coordinate tells us if this term is an elementary term or a com-
posite term.

o If the term is elementary, then the first coordinate tells us if it’s 0 or a
variable.

e If the term is composite, then the third coordinate tells us if it is a term
involving S, + or x and the remaining coordinates store the (already coded)
terms that appear.

Since we are arithmeticising syntax, we need to be somewhat more precise about
syntax(!) from now on. In particular, we will assume that: Var = {1, 22, ...} Word
salad again... Here’s the formal definition:

Definition 3.1.1. We define, for an Lp.,,, terms t the Géddel number of t, denoted
#t, by induction as follows:
(1) If t is 0 then #t = tuple®(0,0,0).
(2) If t is the variable z,,, then #t = tuple®(n,0,0).
(3) If #t1 and #t, have already been defined, then
(a) #(St1) = tuple’ (#t1,0,1)

3. WHAT DO YOU MEAN THE DIRTY WORK STARTS NOW? 3

(b) #(t1+ts) := tuple’ (Ft,, #t2, 2)
(c) #(t1xts) := tuple®(#11, #15,3)

Example 3.1.2. Way we're given the Lpegno-term 0 + S(0). We go one step at a

time. By definition, #0 = tuple*(0) = 0. Now, o
#(S(0) = tuple®(0,0,1) = pair((0,0), 1) = pair(0,1) = 2

so all in all:
#(0 + S(0)) = pair(pair(0,2),2) = pair(5,2) = 30.

Lemma 3.1.3. The set Term of Godel codes for Lpeano-terms is primitive recursive.

PROOF. Since this is the first time we’re coming across something like this
though, maybe it’s a good shout to actually give a (partial but formal) proof. The
proof below is essentially our proof-template for all similar statements we come across
in the future.

Let’s think a little bit about what tuple® does to a triple (z,y, z). By definition, we
have that:

tuple®(0,0,0) = 0, and tuple®(1,0,0) =1,
and it is easy to check that for all other (2,7, 2) we have that tuple®(z,y,z) > 1.
Moreover, for any = > 1 we have that untuple’(z) < z.

We can now define the characteristic function of Term as follows:
e x(0) = 0 [The number 0 represents the constant symbol 0.
e x(1) =1 [The number 1 represents the variable 1]
e If 2 > 1 then we use untuple; as follows:

— If untuple3(z) = 0 (i.e. we are in the variable case), then y(z) = 1 if
and only if untuplel(z) = 0 [The only allowed codes with 0 in their last
coordinate must have 0 in their second coordinate.]

— If untuplel(z) = 1 then y(x) = 1 if and only if untuplej(z) = 0 and
x(untuple}(x)) = 1 [Here we use recursion, we are saying that you're a
valid code term of the form St if your second coordinate is 0 and your
first coordinate is a valid code for a term.]

In the definition of x we didn’t quite use primitive recursion, but we used the version
of recursion we saw in Lemma 3.0.1, since at each point untuple}(z) < x. U

4 CHAPTER 6. OKAY IT’S UNDECIDABLE, BUT IT CAN'T BE INCOMPLETE TOO (CONT’D)

Exercise 3.1.4. Prove that the Godel number function is injective on terms, i.e. if
#tl = #tg then tl = tQ.

Now that we have coded terms into numbers (similar to when we coded instructions
of register machines into numbers) we’ll move on up to coding formulas into numbers
(similar to coding configurations). We’ll keep the same notation for the Gédel number
of a formula, and the idea will be analogous:

Definition 3.1.5. Let ¢ be a propositional formula. We define the Géddel number of
@, #¢, is defined by induction as follows:
(1) If ¢ is atomic, then we define:
o #(1, =ty) to be tuple®(#ty, #t5,0)
(2) Once #¢, and #@9 have been defined, we set:
o #(01 A d2) = tuple® (#1, #¢, 1),
#(D1 V ¢2) = tuple’(#or1, #¢2,2).
#(01 — ¢2) = tuple’ (#61, #¢2,3)
#(—¢1) = tuple’ (#¢1,0,4),
#((Va,)d1) = tuple’ (#¢1,n, 5),
#((3wa)¢1) = tuple’ (#¢1,n,6),

Lemma 3.1.6. The set Fml of Gédel codes for L peano-formulas is primitive recursive.

PROOF. The proof is identical to the proof for terms, we only need to observe
that 0 is a valid code for a formula (since #(0 = 0) = 0) and then recurse (using
Lemma 3.0.1). In the case where untuplei(z) = 0 we use that Term is primitive
recursive, of course. 0

Again, as in terms, the coding we defined above is injective (i.e. ¢ and ¢ are SYN-
TACTICALLY distinct Lpegno-formulas, then #¢ # #1). Coding doesn’t know
anything about semantic equivalence!

Remark 3.1.7. A number can of course represent many objects! For example, the
number 0 represents both the term 0 and the formula 0 = 0. That’s okay, all we ask
is that in each of our (e.g. Term or Fml) numbers represent a unique object!

3. WHAT DO YOU MEAN THE DIRTY WORK STARTS NOW? 5

Moreover, most reasonable properties of formulas are also primitive recursive (as sets
of codes of formulas). Here is a long list of useful fellas:
Lemma 3.1.8. The following sets are all primitive recursive:

(1) The set of pairs (#t,n) where t is a term and v, ¢ Var(t).

(2) The set of pairs (#t,n) where t is a term and v, € Var(t).

(3) The set of pairs (#¢,n) where ¢ is a formula and v, ¢ Var(¢).

(4) The set of pairs (#¢,n) where ¢ is a formula and v,, € Var(¢).

(5) The set of pairs (#¢,n) where ¢ is a formula and v, ¢ Bound(¢).

(6) The set of pairs (#¢,n) where ¢ is a formula and v, € Bound(¢).

(7) The set of pairs (#¢,n) where ¢ is a formula and v, ¢ Free(o).

(8) The set of pairs (#¢,n) where ¢ is a formula and v, € Free(d).

PROOF (SKETCH). The argument is again very similar to the previous argu-

ments. In each case we have to write out a long list of primitive recursive cases that

define our characteristic functions. If you're feeling passionate about case-by-case
analysis then try to do (1). O

In particular, the following set is primitive recursive:
Sen := {#¢ : ¢ is an Lpeano-sentence}.

One last messy construction, that we really have to get out of the way (but hopefully
at this point you just trust that it works):

Lemma 3.1.9. For eachn € N there exist two primitive recursive functions substy,,, subst s,
N2"t1 & N such that if t and si, ..., 5, are Lpeano-terms, ¢ an Lpeano formula, and
i1,...,1, € N we have that:

[] SUbSttrm<i1, . ,in,#sl,. . .,#Sn,#t) = #(t[sl,. . .,Sn/l'il, e ,.Z'in]).
® substyq (i1, ..., 0n, #S1, .. #Sn, #HO) = FH(P[s1, -, Sn/Tiy, oo, T]).

PROOF (VERY SKETCH). All the hard work we did in the first-order logic chapter
was to describe algorithmic ways of computing substitutions. It should be clear,
hopefully, that in writing such an algorithm we only need to use primitive recursion
(and no minimalisation) and by Church’s thesis, this should be enough to finish the
proof. O

6 CHAPTER 6. OKAY IT’S UNDECIDABLE, BUT IT CAN'T BE INCOMPLETE TOO (CONT’D)

3.2. Our axioms are primitive recursive. Now that we have an effective way
of coding formulas, we will show that the set:
{#¢ : ¢ is an instance of an axiom of ., '}

is primitive recursive.

I'll start with a little (unnecessary) diversion, which is to formally prove Corol-
lary 1.5.9, our result about “decidability” of propositional logic, now that we have
the words for it.

We'll first have to redo a little bit of work, but it’s pretty much obvious leg work. A
computer could do it, really.

3.2.1. Decidability of propositional logic. In our formalisation of propositional
variable we kept around a countable set of propositional variables. Now, let us
essentially redefine how to code propositional formulas:!

Definition 3.2.1. Let ¢ be a propositional formula. We define the Gédel number of
o, #¢, is defined by induction as follows:

(1) If ¢ is A,,, then #4 is tuple’(n,0,0).

(2) If ¢ is L then #¢ is tuple®(0,0,1).

(3) If ¢ is T then #¢ is tuple®(0,0, 2).

(4) If ¢ is 1 A x then #¢ is tuple®(#, #1, 3).
(5) If ¢ is 1 V x then #¢ is tuple®(#6, #1, 4)

(6) If ¢ is 1) — x then #¢ is tuple®(#¢p, #1, 4)

Given Church’s thesis and the effectiveness of rewriting formulas in disjunctive nor-
mal form and then replacing instances of V and A with — and L, the following
remark is immediate:

Remark 3.2.2.

(1) There is a primitive recursive function f : N — N which given the Godel
number of an arbitrary propositional formula ¢ returns the Gédel number
of a formula) which is logically equivalent to ¢ and is only written using
connectives from — and L.

(2) Moreover, the set Prop of all Godel numbers of propositional formulas is
primitive recursive.

IThis is essentially the same as definition Definition 3.1.5, so you can just skim through it.

3. WHAT DO YOU MEAN THE DIRTY WORK STARTS NOW? 7

I'll reserve the definition of decidability proper for first-order theories, but the follow-
ing result essentially tells us what we intuitively understood from the very beginning.
There is an algorithm (i.e. a register machine program) which given any finite set
of propositional formulas I" and any propositional formula ¢ can compute if I' F ¢.
The proof below implicitly uses the soundness and completeness theorem.

THEOREM 3.2.3. Let I be a finite set of propositional formulas, then the set:

{#0: T+ ¢}

18 primitive recursive.

PROOF. Let me give a somewhat more formal proof than the usual appeal to
Church’s thesis (which was essentially the “fake” proof I gave at the end of Chapter 2,
but also at this point, such a proof should be enough). The trick is that we can code
assignments of truth values into nice primitive recursive functions. Here’s a funky
way:

For all k£ € N, we define an assignment Ay, : Var — {7, F'} as follows:
T if pr(n)|k
ML) ::{ pr(n)

F otherwise.
Let A : Var — {T, F'} be any assignment. For all N € N there is some k € N such
that for all n < N we have that Ax(A,) = A(A,). Indeed, we may well just take

k= H pr(n)A(A”).2
0<n<N

Crucially, k& can be chosen to be at most pr(N)!

For a propositional formula ¢ we obviously have that if A, € Var(¢), then n < #¢.
Thus:

I' - ¢ is a tautology if and only if for all k < (pr(#aS) [Tyer pr(#¢)>! we have that
if Ax(T) =T, then A(¢) =T.

Now we define a primitive recursive function:

0 if z ¢ #Prop
E(k,z) =<1 ifz=+#Aand A(A)=T.
0 otherwise.

2This is shorthand for pr(n)! if A(A,) =T and pr(n)° otherwise.

8 CHAPTER 6. OKAY IT’S UNDECIDABLE, BUT IT CAN'T BE INCOMPLETE TOO (CONT’D)

To show that such an E exists we need Lemma 3.0.1. Using this lemma and the fact
that primitive recursion is closed under definition by cases, we can define E(k,x) as
follows:

o If = ¢ Prop then E(k,z) = 0.
o If x € Prop then:
— If untuple®(x) = 1, then E(x, k) = 0.

0 if E(k, untuple,(z)) = 0 and E(k, untupley(x)) -

— If untuple®(z) = 4, then E(k, z) = {1 therwi
otherwise .

This makes sense, us untuple;(z) < x always. Finally, we have that:

v € {#¢: Tk ¢} iff (Vk) < ME(k,x) [E(k,v) =1,

Ypel’

where M = <pr(#¢>) [Tyer pr(#¢)>!, O
Of course, we can just forget I' in the theorem above to obtain:

Corollary 3.2.4. The set {#¢ :+ ¢} of all (Gddel codes of) propositional tautologies
18 primative recursive.

Now, I’'m not sure that this was really informative, but it sure was formal.

End of digression

BACK TO AXIOMS NOW.

Proposition 3.2.5. The set
{#¢ : ¢ is an L-formula which is an instance (Al),(A2),(A3)}

18 primative recursive.

PROOF. Let’s do this for (Al):
(60— (¥ —9))

It is clear that for any L pcqno-formulas ¢ we have that

#((¢ = (¥ — 9))) = tuple’ (#¢, tuple’ (#v, #¢, 3), 3).

3. WHAT DO YOU MEAN THE DIRTY WORK STARTS NOW? 9

Hence, z is an instance of (A1) if and only if there are y, z < x such that y, z € Form
and

x = tuple®(y, tuple®(z, y, 3), 3).
This is of course primitive recursive. The argument for instances of the other two
axioms is pretty much the same. 0

Similarly, the quantifier axioms are primitive recursive:

Proposition 3.2.6. The set
{#¢ : ¢ is an L-formula which is an instance (Q1),(Q2),(Q3),(Q4)}

18 primative recursive.

PROOF. The proof is essentially identical. The only technicality that I need to
point out is that this proof hinges on the fact that substy, is primitive recursive (for
axioms (Q2) and (Q3)). O

Proposition 3.2.7. The set:

{#¢ : ¢ is an L-formula which is an instance (E1),(E2),(E3),(E4), (E5)}

18 primative recursive.
PROOF. Similar to previous proofs. O
Exercise 3.2.8. Write out the details of the proofs above.

To fix notation, we will write Ax for the set of all Gdel numbers of instances of
axioms. This is the union of the three sets we just showed are primitive recursive and
is therefore primitive recursive. Let’s take a very brief break to fix some terminology.

3.3. Recursive and decidable theories. We have only defined coding for
L peano-formulas here, but a similar definition could let us code formulas into numbers
in any (finite) language £. I won’t do this here explicitly, but the idea is similar. We
just assign numbers to the symbols and take it from there!

Definition 3.3.1. We say that a theory T is recursive if the set {#¢ : ¢ € T} is
recursive.

Most natural theories are recursive, Indeed, the empty theory is recursive, and so is
any finite theory. In particular T4, is recursive.

10CHAPTER 6. OKAY IT’S UNDECIDABLE, BUT IT CAN'T BE INCOMPLETE TOO (CONT’D)

Exercise 3.3.2. Prove that Tp 4 is recursive.

Definition 3.3.3. A theory T is decidable if the set:
{#6: ¢ €Sen(L) and T' - ¢}

is recursive. Otherwise, we say that T is undecidable.

Okay, now back to coding.

3.4. Coding proofs. This will be easy enough. We have just one new definition.
Let A = (d1,...,0,) be a sequence of formulas. Then:

##A = <#517 ER) #6n>
As usual, we'll call ##A the G6del number of A.

THEOREM 3.4.1. Let T be a recursive theory. Then, the set:
Drv(T) := {(#¢, ##A) : ¢ is a formula, and A a derivation of ¢ in T}
18 primative recursive.
PROOF. It really suffices to go back to our definition of - and see that the proce-

dure for recognising whether a sequence of formulas is a derivation is an effective one!
Indeed, (n,m) € Drv(T) if and only if the following three conditions are satisfied:

(1) For all i < Ig(m), (m); € Fml

(2) We have that (m)igm)—-1 =n

(3) For all i <Ig(m) one of the following holds:
e Either (m); € AxU{#¢: 0 € T}, or
e There is some j < i and p < m such that (m); = tuple’((m);,p,5),
e There are k,! < i such that (m);, = tuple®((m);, (m);, 3).

The three conditions in (3) express that any formula in the derivation is either an
instance of an axiom, or it is obtained by (Gen) [and the variable that appears in the
quantifier cannot have index greater than m| or it is obtained by (MP). You should
probably spend a little bit of time thinking about this! 0

We may pretty much conclude the following;:

3. WHAT DO YOU MEAN THE DIRTY WORK STARTS NOW? 11

Corollary 3.4.2. Let T be a recursive theory. Then
{#¢: ¢ €Sen(L) and T + ¢}

15 recursively enumerable.

PROOF. Observe that #¢ € {#¢ : ¢ € Sen(L) and T F ¢} if and only if #¢ €
Sen(L) (i.e. it is a sentence) and there is some m € N such that (#¢, m) € Drv(T).
The former set is, as we have essentially seen primitive recursive, and the latter is the
projection of a primitive recursive set onto the last coordinate (so by Theorem 3.2.7
it is recursively enumerable). Thus #¢ € {#¢ : ¢ € Sen(L) and T I ¢} if and only
if it is in the intersection of two recursively enumerable sets. O

In particular, the sets

{#0¢ : ¢ € Sen(Lpeano) and Tpa F ¢}
and
{#¢ : ¢ € Sen(Lpeano) and Tpa, - ¢}
are both recursively enumerable. The cherry on top is the following theorem:

THEOREM 3.4.3. If T s a recursive and complete theory, then T is decidable.

PROOF. Because T is complete, the complement of {#¢ : T F ¢} is precisely
{#¢ : T+ —¢}, which by the above is recursively enumerable. 0

	Chapter 6. Okay it's undecidable, but it can't be incomplete too (Cont'd)
	3. What do you mean the dirty work starts now?

