
CHAPTER 2

Learning how to count and reason (Cont’d)

Your first night in Hilbert’s Hotel started in a rather eventful manner, but now that
the passengers of Peano’s Plane are all settled in their rooms and the passengers of
The Paradise are looking around for somewhere else to sleep, you’re free to relax a
bit. You spent some time counting sheep – enough time to get all the way up to 2ℵ0 ,
but alas! Still, you cannot sleep.

You think to yourself:

• If I could sleep, then tomorrow I’d be well-rested.

• If tomorrow I’m well-rested, then I will have a productive day.

• If tomorrow I have a productive day, then I’ll be happy.

Unfortunately, as we’ve already established, you cannot sleep. The thought that,
therefore, tomorrow you will be unhappy keeps plaguing your mind. Thankfully(?)
Hilbert’s Hotel just so happens to be haunted, and a strange ghost covered in rain
happens to be haunting your room. It is, of course, the ghost of George Boole, who is
extremely annoyed about your train of thought. So annoyed, in fact, that he decides
to take a break from purgatory and make himself useful.

2. Things are either true or false

We’ll spend the rest of this chapter learning how to reason. We’ll first learn how
to reason in propositional logic, just to warm up for the more grown-up first-order
logic, which is our main topic (and is usually what logicians mean when they talk
about “logic”). The examples from Chapter 1 involved some kind of quantification
(“all cops” – that is the first-order part),1 but there are many interesting examples
to discuss that don’t.

1The classical example that philosophers love to quote is the following: “‘All men are mortal’ ;
‘Socrates is a man’ ; therefore ‘Socrates is mortal’ ”. I’m not sure why this example is so overused,
but I’d feel weird not including it somewhere in this text. Maybe I’m part of the problem? If you’re
interested, this formulation is actually due to John Stuart Mill (1843).

1

2 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

One is the sequence of implications from a couple of paragraphs above. Here are two
more:

Given:

• P1: When a stranger enters the house, my cats meow.

• P2: There is a thief in the living room.

Deduce: D: My cats are mewing.

That’s some solid reasoning! What about the following?

Given:

• S1 : If I have my umbrella with me, then I don’t get wet.

• S2: I am dry.

Deduce: D′: I had my umbrella.

Again, the second deduction really does not feel all that good, does it?

Our goal for now will be to abstract all distractions away and try to understand
exactly what the distinction between a valid and an invalid propositional argument
is. The first distraction is all the words describing the situations in the arguments (“a
stranger enters the house”, “I have my umbrella”, etc.) and the second distraction
is all those connecting words (“when”, “if”, “then”, etc.). Doing as mathematicians
do, we will replace them with symbols that have precise meanings.

There is an important distinction between syntax (how things are written down) and
semantics (what things mean). Let’s not get too bugged down with this yet, but as
a warning, the closer we get to incompleteness, the more important this distinction
will get. Let’s start with the symbols that we will be using to abstract away our
words. We have the following logical connectives:

• ∧ (syntactically “wedge”, semantically “and”);

• ∨ (syntactically “vee”, semantically “or”);

• → (syntactically “right arrow”, semantically “implies”);

• ¬ (syntactically “I’m sure this has a name, but nobody has told me what it
is yet”, semantically “not”);

and if we’re being very pedantic, we should also include parentheses (i.e. the symbols
“)” and “(”) in our list of symbols too.

2. THINGS ARE EITHER TRUE OR FALSE 3

Exercise 2.0.1. Given the intuitive meaning of the logical connectives, try to use
them (in whatever way you see fit) to express the arguments you’ve seen so far in a
mathematical way.

If you gave the previous exercise a try you will probably have realised that we still
need actual precise rules if we want to be able to play this “logic” game. That’s what
we’ll get to next.

2.1. Formulas. To abstract the particulars of given situations (e.g. the meow-
ing of cats or the presence of an umbrella) away and focus on the structure of the
arguments, we will keep a collection of variables, which we refer to as propositional
variables. We will write Var for the set of all propositional variables. Now that you
know all about cardinality, we will assume that |Var| = ℵ0.2

You can think of the elements of Var as stand-ins for English sentences, in the same
way that variables in algebra are stand-ins for numbers. In this chapter, I will mainly
be using the letters A,A1, A2, . . . , and B,B1, B2, . . . , etc. to denote propositional
variables.

A formula of propositional logic (some people that are certainly more pedantic
than I am3 call these well-formed formulas, but like if a formula is not well-formed,
then it’s not really a formula, is it?) is built, inductively, as follows:

(1) A propositional variable is a formula.

(2) If ϕ and ψ are formulas, then so are:

(a) (ϕ ∧ ψ)

(b) (ϕ ∨ ψ)

(c) (ϕ→ ψ)

(d) (¬ϕ)

(3) Every propositional formula is finite and built this way.

Remark 2.1.1. Strictly speaking, (3) in the definition above is not necessary, but
it sort of maybe clarifies the picture a tad. It says that the set of all propositional
formulas is the smallest set of finite strings from the list symbols in the previous

2This is mainly to make our lives easier, in some proofs. You may have read a bit about the axiom of
choice in the blue(=optional) part of last week’s material, and even though it makes me blue(=sad),
I’d like to keep it blue(=optional).
3Yes, such people do exist.

4 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

page that contains all the propositional variables, and is closed under the operations
in (2).

For now, propositional logic is all we have, so I will be referring to formulas of
propositional logic as simply formulas.

Example 2.1.2. Here are some examples of formulas using these symbols: (A∧B),
(A ∨B), ((¬(A ∧B)) → ((¬A) ∨ (¬B))). On the other hand, ∧AB is not a formula
(unless you’re Polish), and neither is ∧A ∨B → (not even in Poland).

For now (though not for long), these formulas are purely syntactical objects. They
don’t have any meaning – to stress this, let’s keep all the brackets around (although
as you get more and more comfortable with logic can probably start skipping some
bracketing).4

Remark 2.1.3. Our formulas are inductive objects. That is, every formula is
built by induction, using the steps (1)-(3), above. Thus, if we want to prove that
some statement P is true of all formulas, it suffices to do the following:

• Base case: Prove that P is true of all propositional variables.

• Inductive step: Prove that if P is true of ϕ and ψ then P is true of (ϕ∧ψ),
(ϕ ∨ ψ), (ϕ→ ψ) and (¬ϕ).

Another way of expressing the second bullet above is:

• Inductive step: Suppose that ϕ is of the form (ϕ1 ∧ ϕ2) and P holds of ϕ1

and of ϕ2. Show that P holds of ϕ. Do the same for all other possible forms
of ϕ.

Similarly, if we want to define some property S of formulas, we need to do the
following:

• Base case: Define S for propositional variables.

• Inductive step: Assuming that S has been defined for ϕ and ψ, define S for
(ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) and (¬ϕ).

Let’s illustrate this with an important example:

4There are binding conventions just like arithmetic. ¬ binds the strongest, then ∨ and ∧ have the
same binding power, and then → is the weakest. We still use brackets, when need be, to make
things clear.

2. THINGS ARE EITHER TRUE OR FALSE 5

Definition 2.1.4. Let ϕ be a formula. We define the set of subformulas of ϕ, denoted
Sub(ϕ) inductively, as follows:

(1) For a propositional variable A, we define Sub(A) = {A}

(2) Suppose that we have defined Sub(ϕ1) and Sub(ϕ2). Then:

• Sub(ϕ1 ∧ ϕ2) = {ϕ1 ∧ ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2),

• Sub(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2),

• Sub(ϕ1 → ϕ2) = {ϕ1 → ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2), and

• Sub(¬ϕ1) = {¬ϕ1} ∪ Sub(ϕ1).

So we have now defined the set of subformulas for any formula ϕ. We say that ψ is
a proper subformula of ϕ if ψ ∈ Sub(ϕ) \ {ϕ}.

This may seem complicated, but after just one example it will make all the sense in
the world:

Example 2.1.5. Let ϕ be the following formula ((A1 → A2) ∨ (A2 → ¬A3)). To
compute

Sub(ϕ) := Sub(((A1 → A2) ∨ (A2 → ¬A3)))

we go by the definition:

• Step 1. Sub(((A1 → A2) ∨ (A2 → ¬A3))) = {(A1 → A2) ∨ (A2 → ¬A3)} ∪
Sub((A1 → A2)) ∪ Sub((A2 → ¬A3)).

• Step 2. Sub((A1 → A2)) = {(A1 → A2)} ∪ Sub(A1) ∪ Sub(A2), Sub((A2 →
¬A3)) = {(A2 → ¬A3)} ∪ Sub(A2) ∪ Sub(¬A3)

• Step 3. Sub(A1) = {A1}, Sub(A2) = {A2}, Sub(¬A3) = {¬A3} ∪ Sub(A3)

• Step 4. Sub(A3) = {A3},

So all in all:

Sub(ϕ) = {A1, A2, A3, (¬A3), (A1 → A2), (A2 → (¬A3)), ϕ}.

That wasn’t that hard, now, was it?

Definition 2.1.6. Let ϕ be a formula. We define the set of variables of ϕ, denoted
Var(ϕ), inductively, as follows:

(1) For a propositional variable A, we define Var(A) = {A}.

6 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

(2) Suppose that we have defined Var(ϕ1) and Var(ϕ2). Then:

• Var(ϕ1 ∧ ϕ2) = Var(ϕ1) ∪ Var(ϕ2),

• Var(ϕ1 ∨ ϕ2) = Var(ϕ1) ∪ Var(ϕ2),

• Var(ϕ1 → ϕ2) = Var(ϕ1) ∪ Var(ϕ2), and

• Var(¬ϕ1) = Var(ϕ1).

In this way, we have defined Var(ϕ) for all formulas ϕ.

Example 2.1.7. To find Var(((¬(A∧B)) → ((¬C)∧(¬B)))) we go by the definition:

• Step 1. Var(((¬(A∧B)) → ((¬C)∧(¬B)))) = Var((¬(A∧B)))∪Var(((¬C)∧
(¬B))).

• Step 2. Var((¬(A ∧ B))) = Var((A ∧ B)), and Var(((¬C) ∧ (¬B))) =
Var((¬(C))) ∪ Var((¬B)).

• Step 3. Var((A∧B)) = Var(A)∪Var(B), Var((¬C)) = Var(C), Var((¬B)) =
Var(B).

• Step 4. Var(A) = {A}, Var(B) = {B}, Var(C) = {C} and Var(B) = {B}.

• Step 5. Var(((¬(A ∧ B)) → ((¬C) ∧ (¬B)))) = {A} ∪ {B} ∪ {C} ∪ {B} =
{A,B,C}

Okay, that was a pain, let’s never do this again.

Exercise 2.1.8. Let ϕ be a formula. Show that Var(ϕ) = Sub(ϕ) ∩ Var (where,
remember, Var is the set of all propositional variables).

Definition 2.1.9. Let ϕ, ψ be formulas and A a propositional variable. The substi-
tution of ψ for A in ϕ, denoted ϕ[ψ/A] is defined as follows:

(1) For the propositional variable B we define B[ψ/A] as follows:

B[ψ/A] :=

{
B if A ̸= B

ψ if A = B.

(2) Suppose that we have defined ϕ1[ψ/A] and ϕ2[ψ/A]. Then:

• (ϕ1 ∧ ϕ2)[ψ/A] = (ϕ1[ψ/A] ∧ ϕ2[ψ/A]),

• (ϕ1 ∨ ϕ2)[ψ/A] = (ϕ1[ψ/A] ∨ ϕ2[ψ/A]),

2. THINGS ARE EITHER TRUE OR FALSE 7

• (ϕ1 → ϕ2)[ψ/A] = (ϕ1[ψ/A] → ϕ2[ψ/A]), and

• (¬ϕ2)[ψ/A] = (¬ϕ1[ψ/A]).

In this way, we have defined ϕ[ψ/A] for all formulas ϕ.

The following remark is also by induction, but a different kind of induction:

Remark 2.1.10. We have defined ϕ[ψ/A], and we iterate the definition above. In-
deed, suppose that ψ1, . . . , ψn+1 are formulas and A1, . . . , An+1 are propositional
variables, and ϕ[ψ1/A1, . . . , ψn/An] has been defined. Then:

ϕ[ψ1/A1, . . . , ψn+1/An+1] = (ϕ[ψ1/A1, . . . , ψn/An,])[ψn+1/An+1].

Let’s see how to use this stuff in practice:

Lemma 2.1.11. Suppose that A /∈ Var(ϕ). Then, ϕ[ψ/A] = ϕ for any formula ψ.

This is of course a somewhat silly lemma, but it’ll help us understand better how to
prove things by induction on the structure of formulas, i.e. as in Remark 2.1.3

Proof. By induction.

• Base case: If ϕ is a propositional variable and A /∈ Var(A), then ϕ = B, for
some propositional variable B ̸= A. Thus ϕ[ψ/A] = B[ψ/A] = B = ϕ.

• Inductive step. Suppose that the theorem holds of ϕ1 and ϕ2 then we have
to show that it holds of (ϕ1 ∧ ϕ2), I’ll only do one case here:

(1) By inductive hypothesis, we know that “If A /∈ Var(ϕi) then ϕi[ψ/A] =
ϕi, for i = 1, 2. Suppose that ϕ is of the form (ϕ1 ∧ ϕ2) and that
A /∈ Var(ϕ). Then, A /∈ Var(ϕ1) ∪ Var(ϕ2), by definition of Var for
conjunctions. Then ϕ1[ψ/A] = ϕ1 and ϕ2[ψ/A] = ϕ2, by inductive
hypothesis. Thus:

ϕ[ψ/A] = (ϕ1 ∧ ϕ2)[ψ/A]

= (ϕ1[ψ/A] ∧ ϕ2[ψ/A])

= (ϕ1 ∧ ϕ2)

= ϕ.

(2) The rest of the cases are left as exercises.

□

8 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

Exercise 2.1.12. Complete the proof of the lemma above.

2.2. Truth tables. Okay, let’s give meaning to our formulas. First of all, every
propositional variable can be either true or false (if you’re not with me on that one,
you may be a lost cause), and for each of these scenarios we need to figure out if our
formula is true or false. To make sense of this, we will use the following symbols to
denote truth and falsity :

T means Truth, and F means Falsity.

The logical connectives we defined are truth functions, their inputs come from
{F, T} (to some power) and their output is either T or F .

So, to define the meaning of a formula we should first define what kind of functions
our constant symbols and our logical connectives are, and take it from there.

Let X be a set. We say that a function is unary on X if its domain is X (i.e. it
takes as input a single element of X) and binary on X if its domain is X ×X (i.e.
it takes as input two elements of X).5 For example, the function f : Z → Z taking
as input any integer x and returning −x is a unary function on Z, while the function
g : Z× Z → Z taking as input two integers x and y and returning x+ y is a binary
function on Z.

In this chapter functions will have as domain the set {T, F} of truth values. We will
define truth functions via truth tables.

(1) Negation: The truth function ¬ defines is a unary function. That is,
f¬ : {T, F} → {T, F}. Our intuition is that the negation truth should be
falsity and the negation of falsity should be truth. This is expressed in the
following truth table:

x f¬(x)
F T
T F

What this means is that when x has the value T , f¬(x) has the value F and
when x has the value F , f¬(x) has the value T .

5This terminology will be generalised more later down the line, but we’ll stick to these terms for
now.

2. THINGS ARE EITHER TRUE OR FALSE 9

(2) Conjunction: The truth function ∧ defines is a binary function. That is,
f∧ : {F, T}×{F, T} → {F, T}. Our intuition is that the conjunction of two
statements should be true precisely when they both are true:

x y f∧(x, y)
F F F
F T F
T F F
T T T

So, as we’d expect f∧(x, y) is true when x and y are both true.

(3) Disjunction: The truth function ∨ defines is also a binary function. That
is, f∨ : {F, T} × {F, T} → {F, T}. It may not be exactly obvious how ∨
should behave (in fact in the real world, there are two ways in which “or”
is used: the exclusive way and the inclusive way). In logic, we’re inclusive
people and we will always adopt the latter. Thus, the disjunction of two
statements should be true precisely when one of them is true:

x y f∨(x, y)
F F F
F T T
T F T
T T T

This is where the easy things end. The following discussion is mainly here to give
intuition, but it may not be too intuitive, if you read it and it confuses you, don’t
overthink it.

Informal-ish Discussion. Let’s briefly look back at our set theory. We defined the
intersection of two sets to be the set that contains the elements that appear in both
sets. Let X and Y be sets, and A and B be the statements x ∈ X and x ∈ Y ,
respectively. Then x ∈ X ∩ Y if and only if A ∧ B holds. Similarly, x ∈ X ∪ Y if
and only if A ∨ B holds. To define implication, a good way of thinking about it is
in terms of subsets. We want to say that X ⊆ Y if and only if A → B. What this
means is the following:

• If x ∈ X then the only valid outcome for X ⊆ Y is that x ∈ Y , i.e. if A it
true, then B should be true, in order for A→ B to hold.

10 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

• If x /∈ X then both x ∈ Y or x /∈ Y are valid outcomes for X ⊆ Y , i.e. for
A→ B to be true, so A→ B is true when A is false and B is either true or
false.

• If x /∈ Y and x ∈ X then X is not a subset of Y . So if A is true and B is
false, then A→ B is false.

Sorry if that was confusing. Let’s summarise –if you skipped the above, below is the
definition of →:

(4) Implication: The truth function → defines is also a binary function. That
is, f→ : {F, T} × {F, T} → {F, T}. The truth table of this function is given
below:

x y f→
F F T
F T F
T F T
T T T

Now that we have some truth tables under our belt, we can start connecting the
suckers. We will be doing this in a pretty natural way. Indeed, in the truth tables
above, x and y could be propositional variables whose truth value we had already
decided, but they could well have been formulas, in their own right (again whose truth
value he had already defined). This is starting to smell like an inductive definition...

Going back to the reason we are doing all of this stuff in the first place, we want
to abstract away arguments, right? And in our arguments, propositional variables
are “placeholders” for English statements. And these English statements could, in a
given situation, either be true or false. The next definition captures the idea of a
“situation”:

Definition 2.2.1. A truth assignment (or just assignment) is a function A which
associates to every propositional variable a truth value, i.e. a function A : Var →
{T, F}. We will write A for the set of all assignments.

We can already define what the truth value of a propositional sentence is:

Definition 2.2.2. Let ϕ be a propositional formula and A an assignment. Then,
the valuation of ϕ under A, denoted valA(ϕ) is defined as follows:

(1) valA(A) = A(A), for any A ∈ Var.

2. THINGS ARE EITHER TRUE OR FALSE 11

(2) Let ϕ1 and ϕ2 be propositional sentences and assume that valA(ϕ1) and
valA(ϕ2) have been defined. Then:

(a) valA(ϕ1 ∧ ϕ2) = f∧(valA(ϕ1), valA(ϕ2)).

(b) valA(ϕ1 ∨ ϕ2) = f∨(valA(ϕ1), valA(ϕ2)).

(c) valA(ϕ1 → ϕ2) = f→(valA(ϕ1), valA(ϕ2)).

(d) val(¬ϕ1) = f¬(valA(ϕ1)),

where the functions in (a)-(d) are as we defined previously.

We will also write ϕ[A] to denote valA(ϕ), and we will write A ⊨ ϕ to denote that
ϕ[A] = T (and similarly A ⊭ ϕ to denote that ϕ[A] = F).

Let’s illustrate this with a couple of examples:

Example 2.2.3. Suppose that A is an assignment such that A : A 7→ T,B 7→ F
and A′ an assignment such that A′ : A 7→ T and A′ : B 7→ T . Then:

A ⊭ (A→ B), but A′ ⊨ (A→ B).

Intuitively, we want to think of formulas as being themselves truth functions. The
unfortunate reality of life is, though, that they are not. In fact, what they are is
functions from A, the set of all assignments, to {T, F}.

In the examples above, to see if an assignment makes a formula true, we ONLY had
to look at the variables that appear in the formula. This is very much a general fact:

Theorem 2.2.4. Let ϕ be a formula and A,B ∈ A two assignments. Suppose that
for all A ∈ Var(ϕ) we have that A(A) = B(A). Then A ⊨ ϕ if and only if B ⊨ ϕ.

Proof. By induction on the structure of ϕ, see next exercise. □

Exercise 2.2.5. Write out the details of the proof of Theorem 2.2.4

The point of the theorem above is that the truth function of a formula depends just
on the propositional variables that appear in it. Since formulas are finite objects,
they only contain finitely many propositional variables, and thus, to fully describe
what ϕ does we only need to specify the values it takes on the possible assignments
of its variables.

A little more frivolous notation before we get back to our good old friends the truth
tables

12 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

Notation 2.2.6. Let g, h : A → {T, F} be functions. We define:

(1) g ∧ h : A → {T, F} to be the function
g ∧ h : A → {T, F}

A 7→ f∧(g(A), h(A)).

(2) g ∨ h : A → {T, F} to be the function
g ∨ h : A → {T, F}

A 7→ f∨(g(A), h(A)).

(3) g → h : A → {T, F} to be the function
g → h : A → {T, F}

A 7→ f→(g(A) → h(A)).

(4) ¬g : A → {T, F} to be the function
¬g : A → {T, F}

A 7→ f¬(g(A)).

After all of this, we have essentially achieved triviality! Indeed:

Theorem 2.2.7. Let ϕ1, ϕ2 be formulas. Then:

(1) fϕ1∧ϕ2 = fϕ1 ∧ fϕ2

(2) fϕ1∨ϕ2 = fϕ1 ∨ fϕ2

(3) fϕ1→ϕ2 = fϕ1 → fϕ2

(4) f¬ϕ1 = ¬fϕ1

Proof. We only prove (1). The rest are left as exercises. We have to show that
for all A ∈ A we have that fϕ1∧ϕ2(A) = fϕ1(A) ∧ fϕ2(A). To this end, let A ∈ A.
Then we have that:

fϕ1∧ϕ2(A) = (ϕ1 ∧ ϕ2)[A]

= val ((ϕ1 ∧ ϕ2)[SA])

= f∧(val(ϕ1[SA]), val(ϕ2[SA]))

= ϕ1[A] ∧ ϕ2[A]

= fϕ1(A) ∧ fϕ2(A).

□

2. THINGS ARE EITHER TRUE OR FALSE 13

Exercise 2.2.8. Show (2)-(4) in the theorem above.

Now that you’ve all hopefully forgiven me for my wild amounts of pedantry, I’m
happy to announce that all of this becomes much easier with truth tables. Indeed,
if A1, . . . , An is a finite set of propositional variables, then we can write down all
assignments restricted to A1, . . . , An as a table of height 2n. For example, all possible
assignments of A1, A2, A3 can be written down as the following table:

A1 A2 A3

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Similarly, all assignments of A1, A2, A3, A4 can be written down as the following
table:

A1 A2 A3 A4

F F F F
F F F T
F F T F
F F T T
F T F F
F T F T
F T T F
F T T T
T F F F
T F F T
T F T F
T F T T
T T F F
T T F T
T T T F
T T T T

14 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

Hopefully, by this point, you get the point. Now, by Theorem 2.2.7, given a compli-
cated formula we just need to evaluate its truth value one connective at a time. For
example, consider the formula ϕ given by:

((A1 → A2) ∨ (A2 → ¬A3))

We can write down fϕ as a long truth table, as follows:

A1 A2 A3 ¬A3 (A1 → A2) (A2 → ¬A3) ϕ
F F F T T T T
F F T F T T T
F T F T T T T
F T T F T F T
T F F T F T T
T F T F F T T
T T F T T T T
T T T F T F T

Exercise 2.2.9. Write out the truth tables of the following formulas:

(1) (A→ (B → A)).

(2) ((A→ (B → C)) → ((A→ B) → (A→ C))).

(3) (A→ (¬A)).

(4) (¬(A ∨B) → ((¬A) ∧ (¬B))).

(5) ((¬A) ∧ (¬B))) → (¬(A ∨B))

(6) (((¬A) → (¬B)) → (((¬B) → A) → A))

Another important consequence of Theorem 2.2.4 is that we can define new truth
functions, by specifying the values they take only at the assignments of the proposi-
tional variables that occur in them. That is, we can specify new truth functions by
writing down their truth tables. Truth functions, naturally give rise to new connec-
tives. Let’s illustrate this via an example:

Example 2.2.10. We define a new binary truth function f as follows:

2. THINGS ARE EITHER TRUE OR FALSE 15

x y f(x, y)
F F T
F T F
T F F
T T T

Define a new connective ↔ by setting, for each assignment A ∈ A:

(ϕ1 ↔ ϕ2)[A] := f(ϕ1[A], ϕ2[A]).

That is to say, for any assignment A ∈ A we have that:

(ϕ1 ↔ ϕ2)[A] = f(ϕ1[A], ϕ2[A]) =

{
T if ϕ1[A] = ϕ2[A]

F if ϕ1[A] ̸= ϕ2[A]

In this sense, any function f : {T, F}n → {T, F} defines a new connective (not all of
them deserve their own symbols though). We will see in a minute that actually using
only the functions f∧, f∨, and f¬ we can already define every function f : {T, F}n →
{T, F}.

2.3. Tautologies are always true.

Definition 2.3.1. We say that a formula ϕ is a tautology, if for all A ∈ A we have
that A ⊨ ϕ. In this case, we write ⊨ ϕ.

To prove that a formula is a tautology, we just need to write down its truth table
and show that every entry in the final column is T .

Example 2.3.2. The formula (A ∨ (¬A)) is a tautology. Indeed:

A ¬A A ∨ (¬A)
T F T
F T T

This tautology is important enough to have a name, it’s called the law of excluded
middle. Some people don’t think this is a tautology.

Here’s another tautology:

16 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

Example 2.3.3. The formula ((A ∧ (A→ B)) → B) is a tautology. Indeed:

A B (A→ B) (A ∧ (A→ B)) ((A ∧ (A→ B)) → B)
F F T F T
F T T F T
T F F F T
T T T T T

This tautology is modus ponens. Everyone agrees on that one.

Exercise 2.3.4. Prove that the following formulas are tautologies:

(1) (A→ (B → A))

(2) ((A→ (B → C)) → ((A→ B) → (A→ C)))

(3) (¬A→ ¬B) → ((¬A→ B) → A))

Definition 2.3.5. We say that a formula ϕ logically entails a formula ψ if, for
every A ∈ A such that ϕ[A] = T we have that ψ[A] = T . In this case, we write
ϕ ⊨ ψ. More generally, if Γ = {ϕ1, . . . , ϕn, . . . } is a set of formulas, we say that Γ
logically entails a formula ψ if, for every A ∈ A such that ϕi[A] = T for all ϕi ∈ Γ
(at the same time) we have that ψ[A] = T . In this case, we write Γ ⊨ ψ.

Example 2.3.6. The formula A ∧B logically entails A. The formula A ∧ (A→ B)
logically entails B. The formula (A∧¬A) logically entails EVERY formula (just like
the empty set is a subset of every set, there are no assignments making (A ∧ ¬A)
true,6 hence every such makes any formula true).

Definition 2.3.7. We say that a formula ϕ is logically equivalent to a formula ψ if
ϕ↔ ψ is a tautology.

Let’s start putting definitions together:

Lemma 2.3.8. Let ϕ and ψ be formulas. Then, the following are equivalent:

(1) ϕ logically implies ψ.

(2) (ϕ→ ψ) is a tautology.

In symbols, ϕ ⊨ ψ if and only if ⊨ (ϕ→ ψ).
6Check this!

2. THINGS ARE EITHER TRUE OR FALSE 17

Proof. Assume (1) and let A ∈ A. If A ⊨ ϕ, then by definition A ⊨ ψ, and
hence A ⊨ ϕ→ ψ. If on the other hand, A ⊭ ϕ, then A ⊨ ϕ→ ψ. [Why??]

Conversely, assume (2). Let A be an assignment. If A ⊨ ϕ then since A ⊨ ϕ→ ψ we
have that A ⊨ ψ. □

Remark 2.3.9. Truth tables are an effective (i.e. you can sit down and do it) way of
checking if a formula is a tautology. Hence, we also have an effective way of checking
if a formula logically implies another.

Just to make our world salad a bit more spicy, we also have the following definition:

Definition 2.3.10. A formula ϕ is called unsatisfiable (or contradictory) if for all
A ∈ A we have that ϕ[A] = F . We say that a set of formulas Γ is unsatisfiable if for
all A ∈ A there is some ϕ ∈ Γ such that ϕ[A] = F .

Clearly, ϕ is contradictory if and only if (¬ϕ) is a tautology. So far so good, let’s
start proving some tautologies:

Lemma 2.3.11. Let Γ be a set of formulas and ϕ, ψ formulas. If Γ logically entails
(ϕ → ψ) and ϕ, then Γ logically entails ψ. In particular, if ϕ and ϕ → ψ are
tautologies, then so is ψ.

In symbols, if Γ ⊨ ϕ and Γ ⊨ (ϕ→ ψ) then Γ ⊨ ψ.

Proof. Suppose that Γ ⊨ ϕ→ ψ and Γ ⊨ ϕ. Let A be an assignment such that
A ⊨ Γ. If ψ[A] = F , since ϕ → ψ[A] = T , we must have that ϕ[A] = F . [Why??]
But by assumption, we have that ϕ[A] = T , which is a contradiction. Thus A ⊨ ψ,
as required. □

Proposition 2.3.12. Suppose that ϕ is a tautology. Let ψ1, . . . , ψn be formulas
and A1, . . . , An be distinct propositional variables. Then ϕ[ψ1/A1, . . . , ψn/An] is a
tautology.

Proof. It suffices to show this for n = 1 [Why?] Suppose that ϕ is a tautology.
Let A be an assignment. We need to show that A ⊨ ϕ[ψ1/A1]. Define a new
assignment A′ by setting:

A′ : A 7→

{
valA(ψ1) if A = A1

A(A) otherwise.

18 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

Then, we obviously have that:

A ⊨ ϕ[ψ1/A1] if and only if A′ ⊨ ϕ.

[Formally, we should prove the above by induction on the structure of formulas.] But,
since ϕ is a tautology, we have that A′ ⊨ ϕ, so A ⊨ ϕ[ψ1/A1], and hence ϕ[ψ1/A1] is
a tautology. □

The next proposition will be very useful. It will read a bit confusing at first, but it’s
actually just a lot of words to say something very simple. The moral is that if you
replace things by things that are the same as they were then what you started with
and what you ended with are the same. So, up to logical equivalence, Theseus’s ship
is a solved problem.

Proposition 2.3.13. If ϕ be a formula, ψ ∈ Sub(ϕ), and suppose that ϕ′ is obtained
by replacing each occurence of ψ in ϕ by the formula χ. If ψ and χ are logically
equivalent, then so are ϕ and ϕ′.

Proof. We will show that (ψ ↔ χ) → (ϕ ↔ ϕ′) is a tautology (where ↔ is
the binary connective defined in Example 2.2.10). Let A be any assignment. If
valA(ψ) ̸= valA(χ), then A ⊨ (ψ ↔ χ) → (ϕ ↔ ϕ′) [Why?]. If, on the other hand,
valA(ψ) = valA(χ), then again A ⊨ (ψ ↔ χ) → (ϕ ↔ ϕ′) [This should be clear,
since ϕ and ϕ′ only differ in that where one contains ψ the other contains χ and
valA(ψ) = valA(ϕ) – again formally this should be proved by induction]. The result
follows. □

Parts of the following exercise will sometimes make our lives easier in the future.

Exercise 2.3.14. Prove the following logical equivalences:

(1) (A ∧B) ∧ C and A ∧ (B ∧ C)

(2) (A ∨B) ∨ C and A ∨ (B ∨ C).

(3) A→ (B → C) and (A ∧B) → C.

(4) A ∧ (B ∨ C) and (A ∧B) ∨ (A ∧ C).

(5) A ∨ (B ∧ C) and (A ∨B) ∧ (A ∨ C).

(6) (A ∧B) ∨ ¬B and A ∨ ¬B.

(7) (A ∨B) ∧ ¬B and A ∧ ¬B.

(8) A→ B and ¬B → ¬A.

2. THINGS ARE EITHER TRUE OR FALSE 19

(9) A↔ B and B ↔ A.

(10) (A↔ B) ↔ C and A↔ (B ↔ C).

The first two parts of the previous exercise tell us that when dealing with multiple
conjunctions (or disjunctions), the way we bracket them does not matter. This allows
us to introduce the following notation:

Notation 2.3.15. We write
∧n

i=1 ϕi as shorthand for ϕ1∧(ϕ2∧(· · ·∧(ϕn−1∧ϕn) . . .)),
and

∨n
i=1 ϕi as shorthand for ϕ1 ∨ (ϕ2 ∨ (· · · ∨ (ϕn−1 ∨ ϕn) . . .)).

2.4. Enough connectives are enough. The goal of this section is to show
that every truth function can be expressed as a combination of the truth functions
f∧, f∨ and f¬. The upshot of this is that for every formula ϕ, there is a formula ψ
built only by using the Boolean connectives ∧,∨ and ¬ which is logically equivalent
to ϕ.

Things get a bit murky because on the one hand we have truth functions and on the
other hand we have formulas, which are functions A → {T, F}.

Dirty-dirty formalism. The functions from A → {T, F} which only depend
on the assignment of a finite number of variables turn out to be the functions that
we are interested in. Indeed, mathematical logic (the way we do it now) is only
interested in finitary formulas.

Definition 2.4.1. A function f : A → {T, F} is called a truth function if there
exists a finite set of variables {A1, . . . , An} ⊆ Var such that for all assignments A,B
we have that if:

Ai ↾{A1,...,An}= B ↾{A1,...,An}

Then, f(A) = f(B). In this case, we call A1, . . . , An the support of f , denoted
supp(f).

Given a formula ϕ we can define a function fϕ : A → {T, F} in the obvious way:

fϕ : A → {T, F}
A 7→ valA(ϕ).

Thus, by Theorem 2.2.4, if ϕ is a formula, then its truth function fϕ is indeed a truth
function. In fact, Theorem 2.2.4 shows that supp(fϕ) = Var(ϕ).

20 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

Remark 2.4.2. Every propositional variable gives rise to a truth function, namely
given a propositional variable A ∈ Var, we can define the function fA : A → {T, F}
by setting fA(A) := A(A). The support of fA is just {A}.

You may be, at this point, wondering what the hell the point is.

Remark 2.4.3. The point is that truth functions can be fully described by a fi-
nite truth tables. Indeed, if f is a truth function, then for any assignment A ∈ A
the value of f(A) is determined by A ↾supp(f), thus, if we list all the 2|supp(f)| possi-
ble assignments of the elements of supp(f), the list of values that f takes on each
assignment fully determines f on all A.

We call a truth function whose support has size n an n-ary truth function. We
call n the arity of f . Given any two n-ary truth functions, we can always assume
that they have the same support. This follows immediately by the next lemma:

Lemma 2.4.4. Let f : A → {T, F} be an n-ary truth function. Suppose that
supp(f) = {A1, . . . , An}. Then, for any set {B1, . . . , Bn} ⊆ Var, there is a truth
function f ′ : A → {T, F} whose support is {B1, . . . , Bn} and such that for all A,B ∈
A, if A(Ai) = B(Bi) for all i ≤ n, then f(A) = f ′(B).

Proof. Define f ′ to be the following truth function:

f ′ : A → {T, F}
A 7→ f(B),

where B is the assignment B(Bi) := A(Ai) for each i ≤ n and B(A) = F , for all
A ∈ Var \ {B1, . . . , Bn}. It is easy to see that g is a truth function (i.e. that it has
finite support). □

Fix a countable subset {A1, A2, . . . } ⊆ Var. By the lemma above, if f is an n-ary
truth function, we can identify it with a truth function whose support is A1, . . . , An.
For any assignment A ∈ A, f is only determined by A ↾{A1,...,An}. Thus, by writing
out the 2n rows of the truth table of f restricted to its support, can view f as a true
truth function {T, F}n → {T, F}. More formally, {T, F}n is just the set of n-tuples
whose entries consist of T or F , and if f is an n-ary truth function, with support
{A1, . . . , An} then we define the function f̄ : {T, F}n → {T, F} as follows:

f̄ : {T, F}n → {T, F}
(x1, . . . , xn) 7→ f(A1 7→ x1, . . . , An 7→ xn),

2. THINGS ARE EITHER TRUE OR FALSE 21

Notation 2.4.5. From now on, we will view identify each truth function f with the
function f̄ : {T, F}n → {T, F}, where n = |supp(f)|, that it induces.

Example 2.4.6. The truth function corresponding to a propositional variable is a
unary (i.e. of arity 1) which returns true to input true and false to input false, i.e.
it is the identity function. The only other unary function is the truth function of ¬.
For our old connectives this is nothing new, indeed, it says that fA∧B is just f∧ (the
point being that fA∧C which is technically a different function is also identified with
f∧).

Definition 2.4.7. Let F := {f1 : {T, F}n1 → {T, F}, . . . , fk : {T, F}nk → {T, F}}
be a set of truth functions. An F-term is defined, inductively, as follows:

(1) Any propositional variable An is an F -term.

(2) For each fi ∈ F , and F -terms t1, . . . , tni
, fi(t1, . . . , tni

) is an F -term.

(3) All F -terms are built like this.

Lemma 2.4.8. F := {f1 : {T, F}n1 → {T, F}, . . . , fk : {T, F}nk → {T, F}} be a set
of truth functions and h an F-term. Then, h defines a truth function.

Proof. The proof is by induction on the structure of F -terms. The base case
is trivial since all propositional variables define a truth function. Now, suppose that
f : {T, F}n → {T, F} is a truth function and t1, . . . , tn are F -terms. By inductive
hypothesis, for each i ≤ n we have that ti is a truth function (of some arity) say ri.
Define:

h : {T, F}m → {T, F},
where m =

∑n
i=1 ri by setting h(x̄1, . . . , x̄n) to be f(t1(x̄1), . . . , tn(x̄n)). To see that

this is a truth function, we only need to observe that the support of h is precisely
the union of the supports of the ti’s, so it is finite. □

This is another inductive definition, which is meant to capture the concept of “com-
plicated function composition”. Let’s illustrate this by a couple of examples:

Example 2.4.9. Let F1 = {f1 : {T, F}2 → {T, F}, f2 : {T, F}2 → {T, F}, f3 :
{T, F} → {T, F}} be truth functions. We can build F -terms which correspond by
the previous lemma to new truth functions in various ways, for example, we can
define:

h : {T, F}3 → {T, F}
(x, y, z) 7→ f1(f2(x, y), z),

22 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

for any (x, y, z) ∈ {T, F}3. Similarly, we could also define:

h′ : {T, F}3 → {T, F}
(x, y, z) 7→ f1(f2(x, y), f3(z)),

for any (x, y, z) ∈ {T, F}3 etc.

Example 2.4.10. Recall from Notation 2.2.6 that if g and h are functions A →
{T, F}, then we write g ∧ h for the truth function f∧(g, h). So, g ∧ h is the truth
function corresponding to the {f∧, g, h}-term f∧(g(A), h(A)), for any propositional
variable A.

Exercise 2.4.11. Show that if g1, . . . , gn are truth functions, then the truth function∧n
i=1 gi (which is shorthand for (g1∧(g2∧(· · ·∧(gn−1∧gn) . . .)))) is an {f∧, g1, . . . , gn}-

term.

More generally, we say that a truth function h : {T, F}m → {T, F} can be written
as a composition of truth functions from F = {fi : {T, F}ni → {T, F} : i ∈ I} if it
is the truth function corresponding to some F -term.

We now come to our main definition of this subsection.

Definition 2.4.12. Let F be a set of truth functions. We say that F is adequate
if for all n ∈ N, every truth function g : {T, F}n → {T, F} can be written as a
composition functions from F .

Theorem 2.4.13. The set {f∧, f∨, f¬} is adequate.

Proof. If f is a nullary truth function, then it is either always false, in which
case it is f⊥ or it is always true, in which case it is f¬(f⊥), where ⊥ is shorthand for
A ∧ ¬A, for any propositional variable A.

Let f : {T, F}n → {T, F} be any n-ary truth function. We want to show that we
can write f as a composition of f∧, f∨ and f¬. By assumption, f is a function in
variables x1, . . . , xn, and it has 2n possible inputs (the domain of f is {T, F}n). We

2. THINGS ARE EITHER TRUE OR FALSE 23

list all the possible inputs to f by:

x11x
1
2 . . . x

1
n

x11x
1
2 . . . x

1
n

x21x
2
2 . . . x

2
n

...
xm1 x

m
2 . . . x

m
n

...

x2
n

1 x
2n

2 . . . x2
n

n

For each j ≤ 2n, if f(xj1, . . . , xjn) = T , consider the following {f∧, f¬}-term:

tj(A1, . . . , An) := gj1(A1) ∧ gj2(A2) ∧ · · · ∧ gjn(An),

where gji (Ai) = Ai if xji = T and gji (Ai) = f¬(Ai) if xji = F .7

Now, let {j1, . . . , jk} ⊆ 2n be the set of all j ≤ 2n such that f(xj1, . . . , xjn) = T . We
claim that our desired function is the following:

h := tj1(A1, . . . , An) ∨ tj2(A1, . . . , An) ∨ · · · ∨ tjk(A1, . . . , An),

which by an adaptation of the previous exercise is an {f∧, f∨, f¬}-term. It remains to
show that for all (x1, . . . , xn) ∈ {T, F}n we have that f(x1, . . . , xn) = h(x1, . . . , xn).
But we understand the truth table of h. Indeed, since it is a big disjunction, of
conjunctions we have that, given (x1, . . . , xn) ∈ {T, F}n

h(x1, . . . , xn) = T implies tji((x1, . . . , xn)) = T for some i ≤ 2n

implies gji1 (x1) ∧ g
ji
2 (x2) ∧ · · · ∧ gjin (xn) = T

implies gjik (xk) = T for all k ≤ n

implies f(x1, . . . , xk) = T.

Conversely, we have that

f(x1, . . . , xk) = T implies gjik (xk) = T for all k ≤ n and some i ≤ 2n

implies h(x1, . . . , xn)

and this concludes the proof. □

Okay, all of this has been really abstract. In part, we showed something rather
cool. Any function from A → {T, F} with finite support can be written as the truth

7We have here used the previous exercise to show that this is an {f∧, f¬}-term.

24 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

function of a formula involving only three connectives, but the funky part is the first
part: Any function from A → {T, F} with finite support can be written as the truth
function of a formula, so from now on, we are totally justified in taking formulas to
be our primitive objects!

– End of digression –

Let’s translate the previous theorem into a fact about formulas:

Corollary 2.4.14. Let ϕ be a propositional formula. Then, there is a propositional
formula ψ of the form:

l∨
i=1

(
m∧
j=1

Ai,j ∧
n∧

j=1

¬Bi,j

)
,

where Ai,j and Bi,j are propositional variables, such that ϕ and ψ are logically equiv-
alent.

Don’t be too scared about the big symbols in the expression above! The corollary
honestly just says that every formula is logically equivalent to a big disjunction of
conjunctions of propositional or negated propositional variables!

The proof of the theorem (which you don’t really have to have read) in disguise,
gives us an actual factual algorithm for rewriting any formula (or actually any truth
function) into one which is logically equivalent to it using only the connectives ∧,∨
and ¬:

• Step 1. Write out the truth table of the function/formula.

• Step 2. Forget about all the rows of the table that the function returns false
and keep all the rows that it returns true.

• Step 3. For each row kept, look at the n variables involved and write down
a long conjunction, where the i-th variable is negated if it shows up as false
in the row and is kept as is, otherwise.

• Step 4. Take the disjunction of all the formulas you wrote down in Step 3.

Let’s illustrate it with an actual example:

Example 2.4.15. Here’s an old truth table:

2. THINGS ARE EITHER TRUE OR FALSE 25

A B (B → A)
F F T
F T F
T F T
T T T

Step 1 done. For Step 2, we only keep rows 1,3, and 4. So

A B (B → A)
F F T
F T F
T F T
T T T

So we write:

• First row: ¬A ∧ ¬B;

• Third row: A ∧ ¬B;

• Fourth row: A ∧B.

All in all:

(¬A ∧ ¬B) ∨ (A ∧ ¬B) ∨ (A ∧B)

is our desired formula.

We say that formulas written as a disjunction of conjunctions of propositional or
negated propositional variables are in disjunctive normal form (DNF). Practice
makes perfect:

Example 2.4.16. Consider the formula (A → B) → C. Let’s write this in DNF,
following our algorithm:

First, we write out the truth table:

26 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

A B C A→ B (A→ B) → C
F F F T F
F F T T T
F T F T F
F T T T T
T F F F T
T F T F T
T T F T F
T T T T T

Then, we focus on the rows that are true:

A B C A→ B (A→ B) → C
F F F T F
F F T T T
F T F T F
F T T T T
T F F F T
T F T F T
T T F T F
T T T T T

Finally, for each row we write out a conjunction of the propositional variables either
as they are (if they are true in the row) or negated (if they are false in the row):

(¬A ∧ ¬B ∧ C) Row 2
∨(¬A ∧B ∧ C) Row 4
∨(A ∧ ¬B ∧ ¬C) Row 5
∨(A ∧ ¬B ∧ C) Row 6
∨(A ∧B ∧ C) Row 8

Now, to convince ourselves (if you haven’t read the proof, this should be useful) that
the algorithm works, let’s do some checks:

2. THINGS ARE EITHER TRUE OR FALSE 27

A B C ¬A ∧ ¬B ∧ C ¬A ∧B ∧ C A ∧ ¬B ∧ ¬C A ∧ ¬B ∧ C A ∧B ∧ C
F F F F F F F F
F F T T F F F F
F T F F F F F F
F T T F T F F F
T F F F F T F F
T F T F F F T F
T T F F F F F F
T T T F F F F T

Think about the colours in the table above for a bit; they should make a convincing
case.

Now, as we’ve already seen, A ∧ B is logically equivalent to ¬(A ∨ B). Hence, by
Proposition 2.3.13 any formula using only ∧,∨ and ¬ is logically equivalent to a
formula using only ∧ and ¬. So we have more adequate sets of connectives, namely
{¬,∨}, and similarly {¬,∧}. Can we do any smaller?

Theorem 2.4.17. The set {→,¬} is adequate.

Proof. We have that:

• A ∨B is just ¬A→ B.

• A ∧B is just ¬(¬A ∨ ¬B) which is just ¬(A→ ¬B).

So, by Proposition 2.3.13 this set of connectives is adequate. □

That’s all good and well, but could we use say a single connective?

Lemma 2.4.18. Let ↓ be the binary connective (called nor) whose truth function is
defined by:

x y f↓(x, y)
F F T
F T F
T F F
T T F

Then {↓} is adequate.

28 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

Proof. Observe that ¬A is logically equivalent to A ↓ A and A→ B is logically
equivalent to ((A ↓ A) ↓ B) ↓ ((A ↓ A) ↓ B) □

Exercise 2.4.19. Prove that the binary connective | (called nand) whose truth
function is defined by:

x y f|(x, y)
F F T
F T T
T F T
T T F

is adequate.

Even though we won’t spend too much time thinking about nor and nand, these
guys are rather special:

Fact. The only binary connectives that are adequate are ↓ and |.

We’re about to start going in the deeper end, so here’s a couple of logic puzzles to
get our spirits up:

Exercise 2.4.20 (From Mendelson’s Introduction to Mathematical Logic).

(1) A certain country is inhabited only by truthers (not that kind of truther’s
rather, people who always tell the truth) and liars (people who always lie).
Moreover, the inhabitants will respond only to yes or no questions. A tourist
comes to a fork in a road where one branch leads to the capital and the other
leads down a cliff. There is no sign indicating which branch to take, but
there is a native standing at the fork. What yes or no question should the
tourist ask in order to determine which branch to take?

(2) In a different country, there are three kinds of people: workers (who of
course always tell the truth), businessmen (who as we’d expect always lie),
and students (who sometimes tell the truth and sometimes lie). At a fork
in the road, one branch leads to the capital. A worker, a businessman and
a student are standing at the side of the road but are not identifiable in any
obvious way. By asking two yes or no questions, find out which fork leads
to the capital (Each question may be addressed to any of the three.)

	Chapter 2. Learning how to count and reason (Cont'd)
	2. Things are either true or false

