CHAPTER 2

Learning how to count and reason (Cont’d)

1.5. How to prove things. So formulas have meanings now, which is a great
and good thing. That being said, going back to Hilbert’s problem, we’d like a way of
proving which formulas are always true (i.e. the tautologies) that is fully automated,
that is, we'd like a system of proofs that a “computer” whatever that means, could
carry out. It would be great if our computer was sound enough to ONLY be able
to prove tautologies, and it would be even greater if our computer could prove ALL
tautologies.

Recall that we have shown that {—, -} is an adequate set of connectives. In this
section, our computer will only have access to these connectives, but of course, since
they are adequate, that should be good enough for our purposes (we’re only doing
this to make life easier, if we wanted to we could really be using more connectives,
but we’d have to introduce more axioms).

Let’s start by expanding on what this “computer” does:

We will formally refer to the symbolic way of producing proofs as a proof system.
A proof system comes with some axioms (i.e. statements that it assumes are true)
and some deduction rules (i.e. statements that let it, given stuff it’s already proved
to prove new stuff).

We will work in a proof system with:
e Axioms:
(A1) (6 = (1 = ¢))
(A2) (¢ = (& = x)) = (6= &) = (6 = X))
(A3) (¢ = =) = (-6 = ¥) = ¢))
for all formulas &, and .

e Deduction Rules:

2 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

(MP) GIVEN: ¢ — 1 and ¢
DEDUCE: 9

A formal proof of formula ¢ is a finite sequence:
(61, -+ &n)
of formulas such that ¢,, = ¢ and for each i < n, one of the following holds:
e Either ¢; is an instance of an axiom;
e Or ¢; can be deduced from an instance of (MP) for some j, k < i.
If there is a formal proof of ¢, we write - ¢, and call ¢ a theorem,

More generally, let I' be a set of formulas. We say that ¢ is deducible from I' if
there is a finite sequence:

(¢17"'7¢n)

of formulas such that ¢,, = ¢ and for each i < n, one of the following holds:

e Either ¢; is an instance of an axiom,;

e Org; el’

e Or ¢; can be deduced from an instance of (MP) for some j, k < i.
In this case, we write I' - ¢.!
Formal proofs can be rather tedious, but they’re fun game to play. This is where it’s
really really important to keep our brackets close(d).
Example 1.5.1.

(1) F (¢ — ¢). Here is a deduction:

¢1:(¢ = (¢ = ¢) = ¢)) (A1)
¢2:((¢0 = (0 = @) = ¢)) = (0 = (¢ = 9)) = (¢ = ¢))) (A2)
93 :((¢ = (0 = @) = (¢ =) (MP)
¢1:(¢ = (¢ — 9)) (A1)
05 (0 — @) (MP)

IThis is the same as a formal proof of ¢, where we have added all formulas in I to the list of axioms
of our formal system.

(2) ET={(¢ = ¢), (¥ = x)} then I' - (¢ — X).

¢1 (1 = X) (Ass)
¢2 (¥ = x) = (¢ = (¥ = X)) (A1)
¢3:(¢ = (¥ = X)) (MP)
¢1:((0 = (¥ = x) = (0 =v) = (0= X)) (A2)
05 :((¢ = ¢) = (¢ = X)) (MP)
6 (¢ — 1)) (Ass)
o7 (¢ — X) (MP)

First, we shall prove that our computer cannot prove wrong things. This is usually
the easy part.

THEOREM 1.5.2 (Soundness of Predicate Logic). If ' -, then ' E 4. In particular,
every theorem is a tautology.

PROOF. We have to show that {¢ : ' F ¢} contains all the axioms, all the
formulas in T" and is closed under (MP). But the first part is trivial, since we have
already shown that (A1)-(A3) are tautologies (Exercise 2.3.4, and Proposition 2.3.12
— tautologies are closed under substitutions). For the second part, suppose that
' E (¢ —) and I' F ¢. We have to show that I' F . But this is exactly
Lemma 2.3.11. U

Now, we embark on the slightly longer journey to completeness, i.e. that our com-
puter can prove all the things:

THEOREM 1.5.3 (Completeness of Predicate Logic). If ' E ¢ then I' & 4. In partic-
ular, every tautology is a theorem.

First, an appetiser:

Lemma 1.5.4 (The Deduction Theorem). The following are equivalent:
(1) TE (¢ —).
(2) TU{o} 9.

PROOF. Of course, (1) = (2) follows immediately by (MP). We really just
have to show (2) = (1). Let ¢4, ..., ¢, be a deduction of ¢ from 'U¢, i.e. ¢, =1

4 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

We will show by induction on i < n that I' - ¢ — ¢;. If ¢; is an axiom or an element
of I, then we have:

X1 9 (Ass)
X2 :¢i = (¢ — ¢i) (A1)
X3 (¢ — ¢i) (MP)

If ¢ = 1, then we can copy the deduction from Example 1.5.1. Finally, suppose that
by induction we have deductions I' - (¢ — ¢;) for all j < i. We wish to show that we
have a deduction " F (¢ — ¢;). By assumption, ¢; is not an axiom nor an element
of I', hence it is deducible using (MP) from some ¢;,, ¢;,. So ¢;, must be of the form
®j, = ¢;. By induction we have deductions I' - (¢ — ¢;,) and I' F (¢ — (¢j, — ¢5)).
Now let us write x1,..., Xn and Xni1,- .., Xm for these two deductions and continue
as follows:

Xm1 (0 = (9, = &i)) = ((0 = ¢5) = (0= ¢))) (A2)

Xmi2 (9 = &5) = (¢ = ¢)) (MP)
Xm+3 (¢ = &) (MP)
This does the trick. O

Exercise 1.5.5. Let I' be a set of formulas. Prove that:
(1) If ¢, € T, then ' - (¢ — ¥).
(2) If =¢ € ', then I' - (¢ —) for any formula .
B)o=W—=x)F¢Y—=(¢—=x)

Now for a little amuse bouche:

Definition 1.5.6. We say that a set of formulas I is inconsistent if there is a formula
¢ such that I' - ¢ and I' - —¢. Otherwise, we say that I' is consistent.

Lemma 1.5.7 (The Adequacy Theorem). IfT" is unsatisfiable, then I" is inconsistent.

Before proving the Adequacy Theorem (whose proof is really the heart of everything),
let’s see how it implies the completeness theorem:

PROOF. Suppose that I' E ¢. Then, I' U {—¢} is unsatisfiable. So, by the Ad-
equacy Lemma, it is inconsistent, and therefore we have that I' U {=¢} F ¢ and
I'U{—-¢} b —, for some formula). By the Deduction theorem, we have that
I'F(=¢ — =) and I' - (=¢ — 1) and hence by (A3) and two applications of (MP)
we have that I' - ¢. O

5

This proof was like way too easy. The real difficulty is in the proof of the Adequacy
Lemma. This will be the hardest proof we’ve done so far, so let’s pull up our sleeves
and do it!

PROOF OF THE ADEQUACY LEMMA. We will prove the contrapositive, that is:

If T" is consistent, then I' is satisfiable.

What this means is that from the PURELY SYMBOLIC assumption that for all
formulas ¥ we have that I' ¥ v or I' ¥ =) we will have to build an assignment A € A
such that ¢[A] =T for all ¢ € T".

e Step 1. Enumerate all the formulas — Since Var is countable, the set of all
propositional formulas is countable, so there is an enumeration {¢y, ¢o, ... }.

e Step 2. Define I'y = I'. This is consistent. Then, inductively define:

ro— Lo U{on} if this set is consistent
", U {—¢,} otherwise.

By definition, if I';,_; U {¢,} is inconsistent, then I',_y U {¢,} F 9 and
Ly U{on} B =1, for some formula ¢p. By the deduction theorem, (A3)
and (MP) applied twice we have that I';,_; = —¢ an hence T',,_; U {=¢,}
is consistent (since, if I',_; F —¢,, then for any formula ¢ we have that
[, 1 F 4 ifand only if T, U {=¢,} F ¢, but the former was assumed to
be consistent, by induction).

o Step 3. Let I'' = J,cy'n- Then I is consistent. If not, then there is a
formula 1) such that IV - ¢ and I"” - =), but then, there is a finite sequence
of formulas ¢1,...,¢, € IV which is a proof of 1) and a finite sequence of
formulas ¢, ..., ¢; € I'' which is a proof of —). But these proofs (together)
would have shown up in some I',, a contradiction. By construction, for
every formula ¢ we have that exactly one of ¢ and —¢ is in I”.

e Step 4. Define a valuation A by setting A(A) = T if and only if A € I'.
e Step 5. Show that for all ¢ we have that ¢[A] = T if and only if ¢ € T'. We

prove this by induction on ¢.

— Case 1. ¢ is a propositional variable A. Then, by definition of A we
have that A € I if and only if A[A] =T.

— Case II. ¢ is of the form (—%). By inductive hypothesis we have that
Y[A] = T if and only if ¢p € T'. If (—))[A] = T, then ¢[A] = F so

6 CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

Y ¢ I and hence (—¢) € I". Similarly, if ¢[A] = F, then ¢ € I” so
(—y) ¢ 17
— Case III. ¢ is of the form (¢» — x). By inductive hypothesis we have

that x[A] = T if and only if xy € I and similarly [A] = T if and only
if € I'.

First, we show that if (¢ — x)[A] =T, then (¢ — x) € I'":

* Case III(a). If ¥[A] = T then we must have that yx[A] = T,
since (¢ — x)[A] = T. It follows that ¢, x € I' and hence
I'"F (v — x). Since (¢ — x) is a formula, it is ¢,, for some
n € N. Then, I';,_; U {(¢» — x)} is consistent. If not, then we
have that I', = I, U{=(¢¥ — x)}, so I" F =(¢p — x), but then
[V would be inconsistent. Thus, we have that (¢ — x) € T',, CT".

« Case ITI(b). If ¢[A] = F, then we have that ¢ ¢ I, and hence (ar-
guing as above) we have that —¢) € T”. Thus, by Exercise 1.5.5(2)
we have that [V I (¢ — x) and arguing again as above we have
that (v — x) € I'.

Next we show that if (¢ — x)[A] = F, then (¢ — x) ¢ I'. In this
case, we have that Y[A] = T, so ¢ € I" and x[A] = F,so x ¢ I. If
1) — x € I then, since ¢ € I, by (MP) we would have that y € I, a
contradiction.

e Step 6. Tie up all loose ends. Since there is an assignment A which makes
all formulas in TV true, and I' C IT” we have that for all p € T', ¢[A] =T, so
I is satisfiable. 0

Phew! We got through that. Let’s get some nice corollaries:

Corollary 1.5.8 (Propositional Compactness). Let I' be a set of propositional for-
mulas. Then, the following are equivalent:

(1) T is satisfiable.
(2) Every finite subset of I is satisfiable.
PROOF. One direction is trivial. For the other direction, if every finite subset of

I' is satisfiable, then every finite subset of I' is consistent, so I' is consistent (proofs
are finitary), and hence I is consistent. By adequacy, I is satisfiable. U

7

Corollary 1.5.9 (Decidability of Propositional Logic). There is an “algorithm™
which given a finite set of propositional formulas I' and a formula ¢ determines
whether or not ' - ¢.

PROOF. Write out the truth table of I" and ¢, if in every row in which all entries
from I' are T" we have that ¢ is T then I' F ¢ and so I' - ¢. That’s the algorithm! [

So what, you could say, well proofs are finite sequences, so given I' just start writing
out proofs. If I' = ¢ then the proof of ¢ will eventually show up. The problem is
that we don’t know if our machine is still running because it hasn’t found a proof
yet or because a proof does not exist!

A limitation which is certainly beyond the scope of this section:

Fact. There is no algorithm which given a set of axioms can decide if the proof
system with that set of azioms together with (MP) is complete.

2See later.

CHAPTER 2. LEARNING HOW TO COUNT AND REASON (CONT’D)

Homework 2

	Chapter 2. Learning how to count and reason (Cont'd)
	Homework 2

