
CHAPTER 3

First(-order) things first

With the ghost of George Boole finally satisfied, you’re now ready to try your luck
at sleeping once again. As you close your eyes, a wild amount of noise starts coming
in through the window of your room. You get up, look outside, and you see Tarski’s
tank going up and down the street. Confused and choosing to ignore the (logical)
consequences, you decide to think a bit more about what you just learned. All the
limitations of the Boolean world become suddenly apparent...

1. Syntax still means how we write things down

1.1. First steps. Let’s start with our basic symbols. We already learned about
some of them in the previous chapter. But now, as we saw previously, we will
introduce more, namely, we will introduce quantifiers:

• ∃ (syntactically “rotated E”, semantically “exists”);

• ∀ (syntactically “rotated A”, semantically “for all”);

But we also need things to quantify over, things like the property of mortality or of
humanity or whatever else. Since we’re trying, at the end of the day, to also do some
mathematics, we will also think about functions.

Definition 1.1.1. A first-order language is a set of symbols L which consists of two
disjoint subsets:

(1) The logical symbols of L:1

(a) A countable set of variables Var, which we will usually denote by
x, x1, x2, . . . , y, y1, y2, . . . , z, z1, z2, . . . , etc.

(b) Our good old logical symbols: ∧,∨,¬,→,↔,∀,∃.

(c) A symbol for equality .
=.

1This part is appears unchanged in EVERY first-order language L.

1

2 CHAPTER 3. FIRST(-ORDER) THINGS FIRST

(2) The signature of L (aka the non-logical symbols) of L, these are the following
three disjoint sets:

(a) A set of constant symbols Const(L). We will usually denote (abstract)
constant symbols as c, c1, c2,

(b) A set of relation symbols Rel(L). We will usually denote (abstract)
relation symbols as R,R1, R2,

(c) A set of function symbols Fun(L). We will usually denote (abstract)
function symbols as f, f

1
, f

2
,

As part of the signature, we also have an arity function
arityL : Rel(L) ⊔ Fun(L) → N≥1.

Let R ∈ Rel(L). If arity(R) = n then we say that R is an n-ary relation
symbol. Similarly, if f ∈ Fun(L). and arity(f) = n then we say that f is an
n-ary function symbol.

To make our lives a bit simpler and avoid transfinite things and Zorn, we will,
unless otherwise stated, assume that |Const(L)|, |Rel(L)|, |Fun(L)| ≤ ℵ0, i.e. that our
signatures are countable. I’m underlying things here to make sure you understand
that these are not constants relations or functions in the sense you may be familiar,
these are constant relation or function symbols.2

Again, just like when we were talking about the syntax of propositional logic, ev-
erything we will discuss in this section is purely syntactic; it’s a bunch of strings of
letters on a page (or a board) and will have NO MEANING yet.

Ah also, since for any first-order language L, the logical symbols of L are always the
same, we will be identifying a language with its signature.

Our first goal is to learn how to write formulas in a given first-order language L. It’ll
take a minute, but we’ll get there. Many things that we will be discussing in this
section, have already shown up here and there when we were playing around with
propositional logic (cf. the definition of F -terms).

Definition 1.1.2. Let L be a first-order language. The terms of L (or L-terms) are
defined inductively, as follows:

(1) Every variable is an L-term.
2Slowly as we understand the interplay between syntax and semantics (next section), I may every
now and again start dropping the underlines, and probably so will you, but for now I’d like to keep
them here.

1. SYNTAX STILL MEANS HOW WE WRITE THINGS DOWN 3

(2) Every constant symbol c ∈ Const(L) is an L-term.

(3) If f ∈ Fun(L) is an n-ary function symbol and t1, . . . , tn are L-terms, then
f(t1, . . . , tn) is an L-term.

(4) That’s it – all terms are constructed by finitely many applications of (1),
(2) and (3).

Remark 1.1.3. Relation symbols don’t show up in term building!

Lemma 1.1.4. Let L be a first-order language. Let T0 be the set Var(L)∪Const(L).
Inductively, define Tn+1 to be the set:

Tn+1 := Tn ∪ {f(t1, . . . , tk) : k ∈ N, f ∈ Fun(L), arity(f) = k, ti ∈ Tn},
and let T =

⋃
n∈N Tn. Then T is the set of all L-terms.

Proof. It should hopefully be clear that the set of all L-terms is contained in
T . For the other inclusion, we show, by induction on n ∈ N that Tn is contained in
the set of L-terms. Indeed this is clear for T0 and follows by (3) for n ≥ 1. □

By the lemma above, the set of all L-terms is T =
⋃

n∈N Tn. Observe that if t ∈ T ,
then there is some minimal n ∈ N such that t ∈ Tn. We call this n the height of t
(some people use the word length, I may do so too from time to time). More down
to earth, the length of any variable or constant symbol is 0 and the length of any
other term is precisely the longest chain of function symbols that appears in it. Here
is an example:

Example 1.1.5. Let L be a first-order language with a single binary (i.e. of arity
2) function symbol g and a single constant symbol c. To compute the length of a
term, we can break it up into a tree, as follows:

g(g(x1, c), g(g(x2, x3), c))

g(x1, c) g(g(x2, , x3)c)

x1 c g(x2, x3) c

x2 x3

The term above has height 3.

This isn’t all that complicated, really, but to make sure you get it, you can try out
the following:

4 CHAPTER 3. FIRST(-ORDER) THINGS FIRST

Exercise 1.1.6. Let L be a language with a single constant symbol c, one unary
(i.e. of arity 1) function symbol f and one binary function symbol g. Write down all
L-terms of length at most 3 in the variables x and y.

Just like matter is built of atoms and stuff, formulas are built out of inseparable
components, the atoms,3 so to speak, of first-order syntax, which we define below:

Definition 1.1.7. The atomic formulas of L (or atomic L-formulas) are defined
inductively as follows:

(1) If t1, t2 are L-terms, then t1
.
= t2 is an atomic L-formula.4

(2) If R ∈ Rel(L) is an n-ary relation. symbol and t1, . . . , tn are terms, then
R(t1, . . . , tn) is an atomic L-formula.

Observe that, whereas in the definition of terms we mixed smaller terms to build
bigger ones, in the definition of atomic formulas, we don’t mix atomic formulas to
build bigger ones. Atomic formulas are atoms indeed! They will form our base case
in the definition of formulas proper.

Indeed, in the definition of formulas, atomic formulas will (up to a point of analogy
obscuring reality) play the role that propositional variables played in the definition
of propositional formulas.

Definition 1.1.8. The formulas of L (or L-formulas) are defined inductively, as
follows:

(1) Every atomic L-formula is an L-formula.

(2) If ϕ and ψ are L-formulas, and x ∈ Var, then:

(a) (ϕ ∧ ψ)

(b) (ϕ ∨ ψ)

(c) (ϕ→ ψ)

(d) (¬ψ)

(e) (∀x)ϕ

(f) (∃x)ϕ

are all L-formulas

(3) That’s it – all L formulas are constructed by finitely many applications of
(1) and (2), above.

3From α- (a-, “not”) + τϵµνω (témno, “I cut”). Bet you weren’t expecting a lesson in etymology in
these notes.
4Note here that we use .

= because these are syntactic objects! Just like with the underlining
business, as we go along, I may start dropping the dot above the equality symbol.

1. SYNTAX STILL MEANS HOW WE WRITE THINGS DOWN 5

In analogy with Lemma 1.1.4 we have the following:

Exercise 1.1.9 (Unique reading of formulas). Let L be a first-order language. Let
F0 be the set of atomic L-formulas. Inductively, define Fn+1 to be the set:

Fn+1 := Fn ∪ {ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ,¬ϕ, (∀x)ϕ, (∃x)ϕ : ϕ, ψ ∈ Fn, x ∈ Var}
and let F =

⋃
n∈N Fn. Prove that F is the set of all L-formulas.

This allows us to define the height of an L-formula, as the minimal n ∈ N such that
ϕ ∈ Fn. Formulas are built in trees, just like terms. Below are some examples that
we could certainly care about:

Example 1.1.10.

(1) The language of graphs, Lgraph, consists of a single binary relation symbol
E.

(2) The language of groups, Lgrp, consists of a constant symbol 1, a binary
function symbol × (usually we write x×y for ×(x, y), because we are not
maniacs), and a unary function symbol −1 (again for similar reasons, we
usually write x−1 for −1(x)).

(3) The language of Peano arithmetic, LPeano (which will be our main focus
in the last chapter) consists of a constant symbol 0, a unary function symbol
S, and two binary function symbols + and ×.

Exercise 1.1.11.

(1) Write two different Lgraph-formulas of height 4 in this language.

(2) Write down two Lgrp-formulas that use all symbols in the language at least
twice.

1.2. Syntax can be annoying, I. In this section, we will handle some of the
syntactical quirks of first-order logic. Thankfully, we have gotten some practice with
annoying syntactical quirks from our experience with propositional logic.

First of all, just like in the case of propositional logic, formulas have variables. Let’s
give a preliminary definition (which should remind us of a definition we’ve seen
before). This time it will take a bit longer to state.

Definition 1.2.1. Let L be a first-order language and t an L-term. We define the
set of variables of t, denoted Var(t), as follows:

6 CHAPTER 3. FIRST(-ORDER) THINGS FIRST

(1) If t is the variable x then Var(t) = {x}.

(2) If t is a constant symbol, then Var(t) = ∅.

(3) If t is of the form f(t1, . . . , tn) for some n-ary function symbol f ∈ Fun(L)
and L-terms t1, . . . , tn, then Var(t) =

⋃
i≤n Var(ti).

We say that t is closed if Var(t) = ∅.

That’s it with terms. Now, for formulas, as you may have expected, we have to start
with the atomic guys and build from there.

Definition 1.2.2. Let ϕ be an atomic L-formula. Then, the set of variables of ϕ,
again denoted Var(ϕ),5 is defined as follows:

(1) If ϕ is of the form t1
.
= t2 for L-terms t1, t2 then Var(ϕ) = Var(t1) ∪ Var(t2).

(2) If ϕ is of the form R(t1, . . . , tn) for some n-ary relation symbol R ∈ Rel(L)
and L-terms t1, . . . , tn, then Var(ϕ) =

⋃
i≤n Var(ti).

Before we move up a level, to formulas proper, we need to make an important
distinction. We want to be able to tell apart if a variables x in a formula appears in
some quantifier, say (∀x) or (∃x) or not.

The following example could explain a bit what’s going on here.

Example 1.2.3. In Calculus, you came across expressions of the form:∫ b

a

f(x)dx.

Here are two integrals, which SYNTACTICALLY are different objects:∫ b

a

3x2 + 2x+ log(x)dx, and
∫ b

a

3y2 + 2y + log(y)dy.

Of course, any sane person understands that the objects these two integrals represent
is the same – we are allowed to switch up the the variable x from the dx as long as
we switch up in the same way all occurrences of x in our expression. A more murky
example is the following:

f(y) = y

∫
y2
(∫

y3dy + y

∫
log(y)dy

)
dy.

5I am here overloading the notation Var we introduced earlier, but it should always be clear what
I’m referring to. In fact, I overloaded that notation before as well, but I’m running out of meaningful
symbols.

1. SYNTAX STILL MEANS HOW WE WRITE THINGS DOWN 7

This is something a maniac would write. A more reasonable human being would
write the above as follows:

f(x) = x

∫
y2
(∫

z3dz + y

∫
log(u)du

)
dy.

I’m pretty sure you all can see what’s happening here. Of course, this is only an
aesthetic choice, but sometimes it’s good to have good aesthetics.

In general, (∀x) and (∃x) in formulas act like dx in integrals, and we’d like to be
able to make the distinctions that in integrals come to us rather naturally.

Definition 1.2.4. Let L be a first-order formula and ϕ an L-formula. We define
three things at the same time:

(1) The variables of ϕ, denoted Var(ϕ);6

(2) The free variables of ϕ, denoted Free(ϕ);

(3) The bound variable of ϕ, denoted Bound(ϕ);

all, by induction on the structure of ϕ, as follows:

(1) If ϕ is atomic, then Free(ϕ) = Var(ϕ),7 Bound(ϕ) = ∅.

(2) Suppose we have defined our three sets for the L-formulas ϕ1 and ϕ2.

• Var(ϕ1 ∧ ϕ2) = Var(ϕ1) ∪ Var(ϕ2),
Free(ϕ1 ∧ ϕ2) = Free(ϕ1) ∪ Free(ϕ2),
Bound(ϕ1 ∧ ϕ2) = Bound(ϕ1) ∪ Bound(ϕ2);

• Var(ϕ1 ∨ ϕ2) = Var(ϕ1) ∪ Var(ϕ2),
Free(ϕ1 ∨ ϕ2) = Free(ϕ1) ∪ Free(ϕ2),
Bound(ϕ1 ∨ ϕ2) = Bound(ϕ1) ∪ Bound(ϕ2);

• Var(ϕ1 → ϕ2) = Var(ϕ1) ∪ Var(ϕ2),
Free(ϕ1 → ϕ2) = Free(ϕ1) ∪ Free(ϕ2),
Bound(ϕ1 → ϕ2) = Bound(ϕ1) ∪ Bound(ϕ2);

• Var(¬ϕ1) = Var(ϕ1),
Free(¬ϕ1) = Free(ϕ1),
Bound(¬ϕ1) = Bound(ϕ1);

6You got it, I’m overloading, again.
7That is, in an atomic formula, ALL variables are free.

8 CHAPTER 3. FIRST(-ORDER) THINGS FIRST

• And now we come to the heart of the cheese, Var((∀x)ϕ) = Var(ϕ), but

Free((∀x)ϕ) = Free(ϕ) \ {x}.
and

Bound((∀x)ϕ) =

{
Bound(ϕ) ∪ {x}, if x ∈ Free(ϕ)

Bound(ϕ), if x /∈ Free(ϕ)

• Var((∃x)ϕ),Free((∃x)ϕ), and Bound((∃x)ϕ) are defined analogously.

We call an L-formula ϕ an L-sentence if Free(ϕ) = ∅.

Okay that was a total mess – I’m sorry. There are some somewhat subtle (and mostly
silly) points that we have to worry about for a minute! Soon we will realise that we
are sensible people and stop worrying about them, but such is life. Here’s the first
point:

A variable in a formula can be both bound and free.8

The second, less important point is the following:

Not every variable that appears next to a quantifier is bound.

The third and last annoyance we could have is the following:

Quantifiers could bind the same variables.

That last annoyance may not mean much to you right now, but as sensible people,
we’d really hope to avoid this. Let’s try to illustrate this with some examples:

Example 1.2.5. I’ll not worry too much about L here, that’s not the point. Suppose
that L has a single relation symbol R of arity 2.

(1) The formula R(x, y) has two variables, x and y and they are both free.

(2) The formula R(x, y) ∧ (∃x)R(x, y) has two variables x and y, two free vari-
ables x and y and one bound variable x.

(3) The formula R(x, y) ∧ (∀z)R(x, y) has two variables x and y, two free vari-
ables x and y and no bound variables.

(4) The formula (∀x)(∀y)(x .
= y) is a sentence.

(5) The formula R(x, x) ∨ (∀x)((∀x)R(x, x) → R(x, x)) is a mess.

8That is to say it’s not always the case that Bound(ϕ) ∩ Free(ϕ) ̸= ∅.

1. SYNTAX STILL MEANS HOW WE WRITE THINGS DOWN 9

This is all very annoying. We can’t really get rid of the second point, so we’ll define
it away:

Definition 1.2.6. Let L be a first-order language and ϕ an L-formula. If ϕ is of the
form (∀x)ψ (respectively (∃x)ψ) and x /∈ Bound(ϕ) (i.e. x /∈ Free(ψ)), then we say
that the quantifier (∀x) (resp. (∃x)) is vacuous in ϕ.

In the next subsubsubsection, we’ll do a lot of syntactical yoga to get rid of the first
and third annoyances. The issue is that formalising common sense can sometimes
be hard. That being said, the contents of this subsubsection are not really required
for the remainder of this chapter, but it’s there as a warm-up for harder substitution
procedures to come. Read at your peril.

1.2.1. Doing the obvious can be hard. The first part of the next definition should
ring some bells:

Definition 1.2.7. Let L be a first-order language, t an L-term and x, y ∈ Var. We
define the term t[y/x] inductively, as follows:

(1) If t is the variable x then t[y/x] is the variable y.

(2) If t is a constant symbol, then t[y/x] is just t.

(3) If t is of the form f(t1, . . . , tn) for some n-ary function symbol f ∈ Fun(L)
and L-terms t1, . . . , tn, then t[y/x] is the term f (t1[y/x], . . . , tn[y/x]).

That’s it for terms, lets go to atomic formulas:

Definition 1.2.8. Let L be a first-order language, ϕ an atomic L-formula and x, y ∈
Var. Then, the atomic formula ϕ[y/x] is defined inductively as follows

(1) If ϕ is of the form t1
.
= t2 for L-terms t1, t2 then ϕ[y/x] is the formula

t1[y/x]
.
= t2[y/x].

(2) If ϕ is of the form R(t1, . . . , tn) for some n-ary relation symbol R ∈ Rel(L)
and L-terms t1, . . . , tn, then ϕ[y/x] is the formula R(t1[y/x], . . . , tn[y/x]).

We now have the tools to define a notion of “free-variable” substitution. The definition
is somewhat complicated but let’s try to bare through it together:

Definition 1.2.9. Let L be a first-order language, ϕ an L-formula and x, y ∈ Var.
We define ϕ[y/x]free inductively, as follows:

10 CHAPTER 3. FIRST(-ORDER) THINGS FIRST

(1) If ϕ is atomic, then ϕ[y/x]free is just the atomic formula ϕ[y/x] we defined
above.

(2) Suppose we have defined ϕ1[y/x]free and ϕ2[y/x]free. Then:

• (ϕ1 ∧ ϕ2)[y/x]free is the formula (ϕ1[y/x]free ∧ ϕ2[y/x]free).

• (ϕ1 ∨ ϕ2)[y/x]free is the formula (ϕ1[y/x]free ∨ ϕ2[y/x]free).

• (ϕ1 → ϕ2)[y/x] is the formula (ϕ1[y/x] → ϕ2[y/x]).

• (¬ϕ1)[y/x]free is the formula (¬ϕ1[y/x]free).

• (∀z)ϕ[y/x]free is defined as follows:

(∀z)ϕ[y/x]free :=

{
(∀x)ϕ if z = x

(∀z)(ϕ[y/x]free) otherwise.

• (∃z)ϕ[y/x]free is similarly defined as follows:

(∃z)ϕ[y/x]free :=

{
(∃x)ϕ if z = x

(∃z)(ϕ[y/x]free) otherwise.

Intuitively, to compute ϕ[y/x]free from ϕ we go down the construction of ϕ and
whenever we are not inside some quantifier of the form (∀x) or (∃x) (for the SAME
x), we change every occurrence of x with y. This is all annoying, but we have to do
it if we’re serious about things. Let’s look at some examples:

Example 1.2.10. Continuing with our binary language from the previous example,
say ϕ is the formula:

(∀z)((∀x)R(x, z) ∨R(x, x)).
Then, (∀z)((∀x)R(x, z) ∨R(x, x))[y/x]free is computed as follows:

Step 1. (∀z)((∀x)R(x, z)∨R(x, x))[y/x]free = (∀z)
(
((∀x)R(x, z)∨R(x, x))[y/x]free

)
.

Step 2. ((∀x)R(x, z) ∨R(x, x))[y/x]free = ((∀x)R(x, z)[y/x]free ∨R(x, x)[y/x]free)

Step 3. (∀x)R(x, z)[y/x]free = (∀x)R(x, z) and R(x, x)[y/x]free = R(y, y).

Step 4. Putting everything together we have:

(∀z)((∀x)R(x, z) ∨R(x, x))[y/x]free = (∀z)((∀x)R(x, z) ∨R(y, y)),

So, all the free occurrences of x were replaced by y. On the other hand,

1. SYNTAX STILL MEANS HOW WE WRITE THINGS DOWN 11

On the other hand, consider the formula:

(∀z)(∀x)R(x, z)
Carrying out the analogous steps, we see that nothing will happen if we apply the
free-occurrence substitution we defined above, since there are no free occurrences of
x in this formula.

Just like in propositional logic, we can inductively define

ϕ[y1/x1, . . . , yn/xn]free.

Exercise 1.2.11. To make sure you understand what happened above, write out
the proper inductive definition of ϕ[y1/x1, . . . , yn/xn]free.

Exercise 1.2.12. Let L be a first-order language and ϕ an L-formula of height h.
Prove that for any variables x1, . . . , xn, y1, . . . , yn ∈ Var, the formula ϕ[y1/x1, . . . , yn/xn]free
is an L-formula of height n, and has the same structure as ϕ.

All of this for the following definition:

Definition 1.2.13. We say that an L-formula ϕ is clean if:

(1) Bound(ϕ) ∩ Free(ϕ) = ∅.

(2) For any x ∈ Var, if ϕ has a subformula of the form (∀x)ψ or (∃x)ψ, then
x /∈ Bound(ψ).

Thus, a formula ϕ is clean if and only if all of its free and bound variables are distinct,
and if (∀x)ψ is a subformula9 of ϕ, then x is not a bound variable of a subformula
of ψ.

The method to clean up formulas may seem rather convoluted, but I promise that
once you get the hang of it, it will become second nature:

Definition 1.2.14. Given an L-formula ϕ, we define pre-clean(ϕ), by induction, as
follows:

(1) If ϕ is atomic, then pre-clean(ϕ) = ϕ.

9The subformulas of a first-order formula are defined analogously to the subformulas of a proposi-
tional formula.

12 CHAPTER 3. FIRST(-ORDER) THINGS FIRST

(2) Suppose that ϕ is a formula of height n+1 and we have defined pre-clean(ψ)
for all formulas of height n. We define pre-clean(ϕ) as follows:

• If ϕ is of the form (ϕ1∧ϕ2), then pre-clean(ϕ) is (pre-clean(ϕ1)∧pre-clean(ϕ2)).

• When ϕ is of the form (ϕ1∨ϕ2), (ϕ1 → ϕ2) or (¬ϕ1), we define pre-clean(ϕ)
similarly.

• If ϕ is of the form (∀x)ϕ1, then pre-clean(ϕ) is defined to be (∀y)pre-clean(ϕ1[y/x]free)
for some y /∈ Var(ϕ1).

• If ϕ is of the form (∃x)ϕ1, then pre-clean((∃x)ϕ1) is defined to be
(∃y)pre-clean(ϕ1[y/x]free) for some y /∈ Var(ϕ1).

Once we have defined pre-clean(ϕ) for any L-formula ϕ, we define clean(ϕ) to be the
formula:

(pre-clean(ϕ))[y1/x1, . . . , ym/xm]free,
where {x1, . . . , xm} = Free(pre-clean(ϕ)), and {y1, . . . , ym} ∈ Var \ Var(pre-clean(ϕ)).

Let’s make our lives really hard for a minute:

Example 1.2.15. Consider the sentence ϕ in a language with a single relation symbol
R of arity 1 (these fellas are sometimes called, in increasing level’s of fanciness:
predicates or unary relations or monadic relations):10

(∀x)

(
(∀x)

(
(∀x)R(x) → R(x)

)
→ R(x)

)
We compute pre-clean(ϕ):

Step 1. By definition, pre-clean

(
(∀x)

(
(∀x)

(
(∀x)R(x) → R(x)

)
→ R(x)

))
is:

(∀y)pre-clean

((
(∀x)

(
(∀x)R(x) → R(x)

)
→ R(x)

)
[y/x]free

)
Step 2. Computing the free-variable substitution above we get:

(∀y)pre-clean
(
(∀x)

(
(∀x)R(x) → R(x)

)
→ R(y)

)
10This may have some unnecessary brackets as we go down the steps, but I’m putting these just to
make the reading a bit cleaner.

1. SYNTAX STILL MEANS HOW WE WRITE THINGS DOWN 13

Step 3. We repeat Step 1, for the formula (∀x)
(
(∀x)R(x) → R(x)

)
→ R(y)

)
to get:

(∀z)
(
(pre-clean((∀x)R(x)) → R(z)

)
→ pre-clean(R(y))

)
Step 4. After we start having some faith, we see that once we put everything back
together we get the following clean formula:

(∀y)

(
(∀z)

(
(∀u)R(u) → R(y)

)
→ R(z)

)

Exercise 1.2.16. Write out in detail the missing cases from the definition of pre-clean.

To get some practice with the definitions, you are welcome to do the following an-
noying exercise in induction:

Exercise 1.2.17. Let ϕ be an L-formula. Show that:

(1) ϕ and pre-clean(ϕ) have the same structure.

(2) Free(ϕ) = Free(pre-clean(ϕ)).

(3) Bound(ϕ) ∩ Bound(pre-clean(ϕ)) = ∅.

(4) Bound(pre-clean(ϕ)) = Bound(clean(ϕ)).

Now, for the main course:

Lemma 1.2.18. For any first-order language L and any L-formula ϕ, the L-formula
clean(ϕ) is a clean formula.

Proof. We have to show two things:

(1) For all x ∈ Var(clean)(ϕ), if x ∈ Free(clean(ϕ)), then x /∈ Bound(clean(ϕ)).
Let x ∈ Var(clean(ϕ)). By definition, we have that:

clean(ϕ) = (pre-clean(ϕ))[y1/x1, . . . , ym/xm]free,

where {x1, . . . , xm} = Free(pre-clean(ϕ)), and {y1, . . . , ym} ∈ Var\Var(pre-clean(ϕ)).
Thus, if x ∈ Free(clean(ϕ)), we have that x = yi, for some i ≤ m. But
then, x /∈ Var(pre-clean(ϕ)) and, in particular, x /∈ Bound(pre-clean(ϕ)) =
Bound(clean(ϕ)), by the previous exercise.

14 CHAPTER 3. FIRST(-ORDER) THINGS FIRST

(2) Now, to show that if clean(ϕ) has a subformula of the form (∀x)ψ (or (∃x)ψ),
then x /∈ Bound(ψ). It suffices to show this when clean(ϕ) is itself of the
form (∀x)ψ (see next exercise). By definition, we know that if clean(ϕ) is of
this form, then clean(ϕ) is the formula:

(∀x)(pre-clean(χ)[y1/x1, . . . , ym/xm]free),

for some formula χ, where x /∈ {x1, . . . , xn}. By the previous exercise:

Bound(ψ) = Bound(clean(χ))

= Bound(pre-clean(χ)[y1/x1, . . . , ym/xm]free))
⊆ Var(χ)

so, if x ∈ Bound(ψ), then x ∈ Var(χ), which is a contradiction.

□

Exercise 1.2.19. Write down the details of the proof of the lemma above.

From now on, we will assume ALL FORMULAS we are dealing with are clean,
by implicitly always replacing a given formula ϕ with clean(ϕ). When we discuss
semantics, we will see that this is purely an aesthetic assumption.

End of digression.
1.2.2. Another approach to cleanliness. All of this was very annoying, and in fact,

just a formal way of doing something very trivial. Given an L-formula ϕ of the form
(∀x)ψ, we say that the scope of the quantifier (∀x) is the subformula ψ. Any free
occurrence of the variable x in ψ is bounded by the quantifier (∀x). If somewhere in
ψ there is a subformula of the form (∀x)χ (or (∃x)χ), then it is this quantifier that
binds all the occurrences of x in χ. For example, in the formula that we were playing
with before:

(∀x)

(
(∀x)

(
(∀x)R(x) → R(x)

)
→ R(x)

)
the scope of the outermost quantifier is:

(∀x)

(
(∀x)

(
(∀x)R(x) → R(x)

)
→ R(x)

)

1. SYNTAX STILL MEANS HOW WE WRITE THINGS DOWN 15

so all FREE occurrences of x in the blue part of the formula are bound by this outer
quantifier. Similarly, we can see that the scope of the second quantifier is:

(∀x)

(
(∀x)

(
(∀x)R(x) → R(x)

)
→ R(x)

)
so again, the FREE occurrences of x in the red part are bound by this intermediate
quantifier. Finally, the scope of the innermost quantifier is:

(∀x)

(
(∀x)

(
(∀x)R(x) → R(x)

)
→ R(x)

)
.

All in all, the occurrences of x bound by each quantifier are as follows:

(∀x)

(
(∀x)

(
(∀x)R(x) → R(x)

)
→ R(x)

)
.

(Pre-)Cleaning up the formula simply involved giving different names to the variables
in each colour. The final clean up step involves renaming all free variables so that
they don’t clash with the quantified variables. Now that we no longer have to worry
about our formulas being dirty, let’s set up some (nice, for a change) notation.

Notation 1.2.20. Let ϕ be an L-formula. We will write ϕ(x1, . . . , xn) to indicate
the following two things:

(1) Free(ϕ) ⊆ {x1, . . . , xn}.

(2) xi ̸= xj whenever 1 ≤ i ̸= j ≤ n.

	Chapter 3. First(-order) things first
	1. Syntax still means how we write things down

