CHAPTER 3

First(-order) things first (Cont’d)

2 N N N SN SN N 2 S

ema n t 1" c s

2.1. Structures and assignments. Okay enough syntax for a minute, let’s
take a breath, and talk about what our formulas mean. In propositional logic, our
sentences were always either true or false, but to make our formulas make sense,
we needed to give each propositional variable a meaning, a so called assignment to
either true or false. So the “place” in which propositional formulas take meaning is
some universe that tells each variable if it should be T or F'. Here, the goal is not to
describe reasoning, but to describe mathematics, so kinda necessarily whatever this
“universe” is, it will have to be a somewhat more complicated one.

Definition 2.1.1. Let £ be a first-order language. An L-structure M consist of a
non-empty set M together with:

(1) An element cM € M, for each constant symbol ¢ € Const(£L)
(2) A subset RM C M™, for each n-ary relation symbol R € Rel(R).
(3) A function fM: M"™ — M, for each n-ary function symbol f € Fun(L).

Altogether, we often write:

M - <M’ <CM)QEConst(L)) (RM)EeReI([E)) (fM)ieFun(£)> :

We call M the domain or universe of the L-structure M. For each constant symbol
¢ € Const(L) we call ¢M the interpretation of ¢ in M and similarly for relation
symbols and function symbols.

Sometimes, we’ll work with a language £ we intuitively understand, such as Lpeqno,
but of course in an L-structure the interpretations of the symbols of the language
can be as insane as we want. Let’s do some examples to make sure we’re on the same

page:

Example 2.1.2. A pretty standard (this will be the punchline to a joke whose set
up will appear several chapters later) £peano-structure, N is the following:

1

2 CHAPTER 3. FIRST(-ORDER) THINGS FIRST (CONT'D)

e The universe of N, is N, the set of all natural numbers.
e The interpretation of the constant symbol 0 is the natural number 0.

e The interpretation of the unary function symbol S is the successor func-

tion:
succ: N —- N

r—x+1

e The interpretation of the binary function symbols + and X are the usual
addition and multiplication functions, respectively.

Another example of an £ pegno-structure, Njponey is the following:
e The universe of Njponey is w™ = N U {N}, the successor ordinal of w.
e The interpretation of the constant symbol 0 is the natural number 3.

e The interpretation of the unary function symbol S is a “loopy” function:

succ : wm — wt

z+1 ifzeN
T —
0 if z =N.

e The interpretation of the binary function symbols + and X are constant
functions that always return the number 9.

Both of these are very valid L£peqno-structures.

Now, we know all about writing formulas, so given an L-formula ¢(z1,...,x,) (re-
member, this means that ¢ is allowed to have free variables, and if it does, these are
amongst 1, ..., x,) and an L-structure M = (M;...), we want to start understand-
ing what ¢ could mean in M. Of course, the meaning of ¢ should (and will) depend
on the values that its variables take in M, just like in the case of propositional logic.

The next definition is, again, something we have seen before, in the context of propo-
sitional logic:

Definition 2.1.3. Let £ be a first-order language and M = (M;...) an L-structure.
An assignment is just a function o that assigns to each variable = € Var an element
of M, i.e. a function « : Var — M.

So, for example, if the domain of an L-structure is N, and Var = {zg, x1, ...} (this is
always possible, since we’ve assumed that our variables are a countable set, the use

2. SSEEMTATNTTTITCTS 3

of other letters for variables is just to make things look pretty), then the following
function is an assignment:
a:Var — N

I could almost give you, now, the definition of the semantics of first-order formulas,

but first I'll need one more little notion. Given an assignment, we will define an
important way of adjusting it, namely changing the value it gives to a single variable:

Notation 2.1.4. Let « : Var — M be an assignment, x € Var and b € M. We write
ay/, for the assignment:

Qy/p 2 Var — M

b ifr=y
Y= .
ay) otherwise.

More generally, let x1, ..., z, € Var be pairwise distinct variables and by, ...,b0, € M.
Then we define:

Qb Jx1,esbn /o0 = (&bl/$1,~.~,bn71/zn71)bn/rn'
This is another one of those inductive definitions. We change the values « gives to
x;, one at a time.

Great, that was abstract and seemingly useless. I feel like the best thing to do now
is not to give you an example or whatever, but rather to keep throwing abstract
definitions at you.

Definition 2.1.5. Let £ be a first-order language, M = (M;...) an L-structure,
and ¢t an L-term. Given an assignment « : Var — M, we define the interpretation of
t in M under a, denoted t™[a], by induction, as follows:

(1) If t is the variable z, then t*[a] is the element a(z) of M.
(2) If t is the constant symbol ¢, then t™[a] is the element ¢M of M.
(3) If tis of the form f(t1,...,t,), for an n-ary function symbol f € Fun(£) and

L-terms ty,...,t,, then t*™[a] is the element fM(tM[a],. .., tM[a]) of M.

Example 2.1.6. Recall our Lpggno-structure N; from before, and the assignment
« : Var — N. The interpretation under « of the term x; x5 in Ny is just the natural
number 2.

4 CHAPTER 3. FIRST(-ORDER) THINGS FIRST (CONT'D)

To make life a little bit more complicated, recall our other £ pegno-structure, Niooney-
An interpretation for this structure is just a map Var — w™, and since Var is count-
able, we can just assume that Var = {1, 2z, ...} U{z,}. Take a to be the function
that maps x; to ¢ (where i is allowed to be N). Then, the interpretation of z; xx,, is
the natural number 9. Remember, X in this structure was the constant function that
always returned the number 9. The interpretation of S(0) is the natural number 10,
and the interpretation of S(z,,) is the natural number 0.

Here’s a lemma that should also look familiar:

Lemma 2.1.7. Let L be a first-order language, M an L-structure and t an L-term.
Let a and 8 be two assignments such that for all x € Var(t) we have a(x) = B(x).
Then, t"[a] = tM[3].

PROOF. We prove this by induction on the length of terms:

e If ¢ is the variable x, then, by assumption we have that a(x) = f(x), and
thus tM[a] = a(z) = B(z) = tM[p].

e If t is a constant symbol ¢ then t"[a] = M = tM[3].

e Suppose that t is of the form f(¢y,...,t,) for some n-ary function symbol
f and L-terms tq,...,t,. Given two assignments o, : Var — M, if they
agree on all the variables in ¢, then they agree on all the variables of each
t;, for i < n. Thus, by induction tM[a] = tM[B], for i < n. So:

tMa] = U al, 0 o) = A8 58] = B,
and we're done. O

We will now extend Notation 1.2.20 to terms, in a natural way:

Notation 2.1.8. If t is an L-term with variables amongst z1, ..., x,, then we may
denote this by t(z1,...,7,).}

2.2. Truth. We have seen how to use assignments to give meaning to terms.
Let’s put all of this together, to define what it means for a formula to be true in a
structure.

Definition 2.2.1 (Tarski’s definition of truth). Let £ be a first-order language,
M = (M;...) an L-structure, and ¢ be an L-formula. Let a : Var — M be an

IRecall that all variables in a term are free.

2. STETMTATNTTTITCTS 5
assignment. We define what it means for ¢ to be satisfied in M, under the assignment
a, denoted M E ¢[a], by induction on the structure of ¢, as follows:

(1) If ¢ is an atomic formula, then there are two cases to consider:
o ME (t; = ty)[a] if and only if tM[a] = t31]a], for L-terms ¢; and ¢,

e M E R(ty,...,t,)[a] if and only if RM(tM[a],...,tMa]), for R €
Rel(£) an n-ary relation symbol and L-terms ¢y, ..., t,.

(2) If we have defined M E ¢;[a] and M E ¢y]a], then we set:

(a) M A ¢9)[a] if and only if M E ¢;[a] and M E ¢s]a].
¢1V ¢9)]a] if and only if M E ¢[a] or M E ¢s[a].
—¢1)]a] if and only if it is not the case that M E ¢|a].

Va)pla] if and only if for all b € M we have that M E ¢/

ME
ME
ME
ME
M E (Fz)¢[a] if and only if for some b € M we have that M E ¢1[o)4].

(f)

= (01
(
(=9
(¢1 — ¢2)[a] if and only if [the obvious thing happens|.
(
(
We write M ¥ ¢[a] as shorthand for: “it is not the case that M E ¢[a]”.?

This definition seems rather void of content. But it’s really the core of this whole
thing. The content of the definition is that the syntax we came up to express stuff
has the meaning we want it to have. In all of the above cases, we are giving real
meaning to a purely syntactic relation.

Example 2.2.2. Here’s a very silly example. You'll be asked to do more examples,
most of them less silly in HW3. In our structure Njponey, for any assignment o, we

have that:
Maoney ': mlixﬁ =

What assignments do in N; is much more interesting and complicated.

Just like when we did truth tables the truth tables themselves didn’t say much, this
is the grown-up version of truth tables (indeed, the first four clauses are precisely
the truth tables from propositional logic). Let’s do some logic!

Lemma 2.2.3. Let M be an L-structure and ¢ an L-formula. Then, the following
are equivalent:

Immediately from the definition, we have that M k& —¢[a] if and only if M ¥ ¢[a].

6 CHAPTER 3. FIRST(-ORDER) THINGS FIRST (CONT’D)
(1) ME ¢[o]
(2) M ¥ —=¢lal
(3) ME—=¢la]

for any assignment o.

This will be a bit of a word-salad, but it does have some moral point, it tells us that
for any assignment o we can replace the syntactic object ¢ by the syntactic object
——¢, and the semantic notions of satisfaction will be unaffected, which (unless you're
an intuit) is a great thing.

PROOF. The equivalence of (2) and (3) is by (the footnote in the) definition. We
show that (1) and (2) are equivalent.

We have to prove this by induction on the structure of ¢. Suppose that ¢ is atomic.
Then:

(1) Suppose that ¢ is of the form ¢; = t5 for L-terms ¢; and ¢5. Then:
ME (4 = to)]o] iff t1"[a] = 13"[]
iff it is not the case that t{'[a] # t2"[a]
iff it is not the case that it is not the case that t1'[a] = t3[a]

if and only if it is not the case that M E —(t; = t3)[a]
iff M ¥ _|(t1 = tg)[()é]

(2) Suppose that ¢ is of the form R(ty,...,t,) for an n-ary relation symbol
R € Rel(£) and L-terms ty,...,t,. Then:
ME R(ty, ... to)[a] if RM(E o, .. 2" [a])

iff it’s not the case that it’s not the case that RM(tM[a], ..., tM[a])
ift ME =R(t,...,t,)[a].

Now, for the inductive part. Suppose that we have shown the result for formulas ¢;
and ¢ (and any assignments).

Exercise 2.2.4. Show that if M E (¢1 A ¢2)[a] if and only if M E (=(¢d1 A ¢2))[a].
Then, do the analogous things for V, — and —.

2. STETMTATNTTTITCTS 7

Suppose that ¢ is of the form (Vz)¢p;. Then:
M E (V)¢ [a] iff for all b € M we have M E ¢1]ay,]

iff for all b € M we have M F =1 [ay)/,]

iff for all b € M it is not the case that M F —¢1[op,]

iff it’s not the case that for some b € M we have M E ¢ [,

iff it’s not the case that for some b € M it is not the case that M E ¢1[v)q]

iff it’s not the case that it’s not the case that for all b € M we have M E ¢1[ay/,]

iff it’s not the case that M ¥ (Vx)¢,

iff it’s not the case that M E —(Vx)¢p,

ifft M FE =(Vzx)o,

which is what we wanted to show.
Exercise 2.2.5. Do the same when ¢ is of the form (3x)¢;.
Having done all the cases, the result follows. 0

I mean it probably shouldn’t feel like it not the case that something happened, or it
should. Anyway it should feel like nothing happened. Here’s more nothing:

THEOREM 2.2.6. Let M be an L-structure and ¢ an L-formula. Then, the following
are equivalent:

(1) ME (Va)¢la]
(2) ME =(3z)(=9)[a]

for any assignment «

PROOF. We have that:
M E (Vx)¢[a] iff for all b € M we have that M F ¢[ay,]

iff for all b € M we have that M ¥ =¢lay),]

iff there is no b € M for which we have M E —¢[;]

iff it is not the case that there is b € M s.t. M E —¢[ow,]
iff it is not the case that M F (Jz)—¢|a]

it M E ~(32)(~6),

which is what we wanted to show. [l

8 CHAPTER 3. FIRST(-ORDER) THINGS FIRST (CONT'D)

Let’s see something we have seen before:

THEOREM 2.2.7. Let ¢(z1,...,x,) be an L-formula and M an L-structure. For any
assignments «, 5 such that for all i < n we have that a(z;) = B(x;), we have that

M E ¢la] if and only if M E ¢[5].

PROOF. The proof is by induction on ¢. I will only write down the case when ¢
is of the form (Vz)y (see next exercise). Let a and § be as above. Let ¢ € M be
any element. Observe that if v and 3 agree on all free variables of ¢, then so do o/,
and B./,. Thus:

M E (Va)y[a] iff for all c € M M E ¥lag,)
iff for all ¢ € M M E [By.]
iff M E (Va)y[B).
U

Exercise 2.2.8. Write out the full proof of the theorem above (you don’t have to
rewrite the part of the proof that I wrote up, but you should certainly discuss what
happens with terms and atomic formulas).

Similarly to propositional sentences, we have the following:

Corollary 2.2.9. If ¢ is an L-sentence, then for any L-structure M we have that
either:

(1) For any assignment o : Var — M we have that M E ¢|a].

(2) For any assignment « : Var — M we have that M ¥ ¢|a].

Thus, if ¢ is a sentence, we are justified in writing M E ¢ to indicate that we are in
case (1) above.

3. SYNTAX AND SEMANTICS DON’T ALWAYS PLAY WELL TOGETHER 9

3. Syntax and semantics don’t always play well together

We'll now get deeper in the weeds of first-order logic. Our goal is to explore the
interplay of syntax and semantics a little bit better. First of all, though we need
to fix some more semantic definitions. The first subsection is rather small, but it
introduces some of the most important definitions of the course.

3.1. Up to logical equivalence. Now that we have semantics, let’s start nam-
ing things. First and foremost:

An L-theory is just a set of L-sentences.
For example {(Vz)(z # x)} is an L-theory (in any language £). So is:
{VaR(z, x), VaVyVz(R(z, y) A Ry, z) = B(x, 2)), VaVyz(R(z,y) = Ry,))},

in a language with a binary relation symbol R. Of course, L-theories are allowed to
be infinite, these are harder to write down, but here’s an example:

{31’13$n /\ ZUZ'%.T]'ZTLEN}.

1<i<j<n

Definition 3.1.1. We say that an L-structure M is a model of an L-theory T' if,
for all ¢ € T we have that M E ¢. We denote this by M E T.

Exercise 3.1.2. Find a model of each of the previous three theories (in an appro-
priate language of your choice).

Ha! If you solved the previous exercise, you may have seen that the first theory did
not have a model. We have a word for theories like that one:

Definition 3.1.3. We say that an L-theory T is satisfiable if there is an L structure
M such that M E T.

We further extend some definitions we saw in propositional logic, this time for £-
sentences, follows:

e We say that ¢ is a logical consequence of 1) if whenever M FE ¢ we have
that M E 1. More generally, if T" is an L£-theory, we overload this notation,
and write T F ¢ to mean that every model of T" is a model of ¢.

e We say that two sentences are logically equivalent if each is a logical
consequence of the other.

10 CHAPTER 3. FIRST(-ORDER) THINGS FIRST (CONT'D)

In the next little subsubsection, I'll discuss a way of viewing predicate logic inside
first-order logic. It’s not at all elegant, and this is the point where I totally regret
not introducing Boolean algebras, but here goes nothing...

3.1.1. Propositional in first. Before we need to do more syntax, let’s take a breath
and a step back. Let £ be a language with no function and no relation symbols and
two constant symbols T and 1. Let T" be the L-theory:

{~(T=L)}u{vaVyVz(z =2V z=1)}

and let M = (M; TM, 1 M) be an L-structure. If M E T, then M has exactly two
elements. An interpretation is just a map sending T to T™ and L to L™ where
TM AL M,

Given a propositional formula ¢ with propositional variables Aq, ..., A,, we construct
an L-formula ¢, (21, ..., z,) by replacing each variable A; in ¢ with the atomic £-
formula z; = T and replacing every instance of T in ¢ with the atomic L-formula
T = T and every instance of L in ¢ with the atomic L-formula T = 1.

Given a (propositional) assignment A : Var — {7, F'} define a (first-order) assign-
ment a4 : Var — M by setting a4(x;) = T if and only if A(4;) = T.

Then we have that:

e For any propositional assignment A, we have that A E ¢ if and only if
ME ¢prplaal.

e A propositional formula ¢ is a propositional tautology if and only if M E
(va71) e (vxn)qbprp

Exercise 3.1.4. Prove the two points above.
End of digression

We’ll get back to connections between propositional and first-order logic later. For
now I want to discuss something rather annoying.

3.2. Syntax can be annoying II: Electric Substitutionaloo. We’ve cleaned
up our formulas but things can still go wrong. Remember, we defined previously what
it means to substitute a variable for a different one. Now, we’ll see what happens
when we try to substitute terms for variables. For closed terms, this is kind of
obvious, we just put them where we should put them and go on with our day. For
terms which contain variables though the waters murk up quickly.

The usual example people give for this is the following:

3. SYNTAX AND SEMANTICS DON’T ALWAYS PLAY WELL TOGETHER 11

Example 3.2.1. Let £ be any first-order language and consider the following £-
formula ¢(y):

(3z)=(z = y)
For any L-structure M = (M;...) with at least two elements in its universe and
any interpretation « : Var — M we see that:

M E ¢lal.

This is the same if we substitute for y any variable z different from x. However, if
we consider ¢[z/y]frec, then we end up with the formula:

()= (2 = x)

which is never satisfied in ANY structure.

What we’d like is a notion of substitution that is not affected by this. More explicitly,
we'd like a way of computing ¢[z/y] which results in a formula such that:

For every assignment o we have that M F ¢[a] if and only if
ME (9[z/y])[ay) /e

That is, we’d like to not care about bound variables and have a way of substitution
that respects assignments.

Why are we going through this trouble, you may be asking yourselves. The real
answer is that just like in the case of propositional logic we will eventually prove a
theorem connecting syntax and semantics,® and (a) as we saw in the definition of
truth, substitutions are crucial to evaluate truth, because we want a formal proof
system (i.e. a computerised procedure to produce proofs) we need to be able to
trust that our computer can perform substitutions (SYNTAX) without changing the
meaning of the things its proving (SEMANTICS). The way we’ll get to it below is
not the only possible, but it works.

Definition 3.2.2. Let £ be a first-order language, ¢t an L-term zq,...,x, € Var
distinct variables and sq,...,s, be L-terms. We define the term ¢[s/z] inductively,
as follows:

(1) If ¢ is the variable y then:

y[5/7] = {y ify ¢ {o1,..., 2.}

s; ify=ux;

3The Soundness and Completeness Theorem of course.

12 CHAPTER 3. FIRST(-ORDER) THINGS FIRST (CONT'D)

(2) If t is a constant symbol, then ¢[s/Z] is just t.
(3) If t is of the form f(ty,...,t,) for some n-ary function symbol f € Fun(L)
and L-terms ty,...,t,, then ¢[5/7] is the term f (£1[5/7],...,t,[5/7]).

The first two parts of the previous definition were just like the first two parts of
Definition 1.2.7, but where things started next exercise is here to convince you that
we do indeed need to do our substitutions simultaneously and not sequentially:

Exercise 3.2.3. Let £ be a language with a binary function symbol f. Write down
an example of an L-term t and L-terms sq,...,S, such that t[sy/z1,...,s,/x,] #

t[s/z].
Now, we continue to atomic formulas in the obvious way:

Definition 3.2.4. Now, let ¢ be an atomic L-formula, xq,...,x, € Var distinct
variables and si,...,s, be L-terms. Then, the atomic formula ¢[5/z] is defined
inductively as follows

(1) If ¢ is of the form t; = ty for L-terms t;,ty then ¢[5/Z| is the formula
[s/5] = t2[5/3].
(2) If ¢ is of the form R(t,...,t,) for some n-ary relation symbol R € Rel(£)
and L-terms tq,...,t,, then ¢[5/Z] is the formula R(t[s/z],...,t,[5/Z]).
Finally:
Definition 3.2.5. Let £ be a first-order language, ¢ an L-formula, x1,...,x, € Var
distinct variables and s, ..., s, be L-terms. We define ¢[s/z] inductively, as follows:

(1) If ¢ is atomic, then ¢[5/Z] is just the atomic formula ¢[y/x] we defined
above.

(2) Suppose we have defined ¢[5/Z|, ¢1[5/z] and ¢5[5/Z]. Then:
o (1 A ¢2)[5/7] is the formula (¢1[5/Z] A ¢2[5/Z]).
o (1 V ¢2)[5/7] is the formula (¢1[5/Z] V ¢2[5/Z]).
e (1 — ¢9)[5/7] is the formula (¢1[5/z] — ¢2[5/7]).
(—¢1)[5/7] is the formula (—¢1[5/7]).
o (Vy)o[s/z| is harder. Let {z;,,...,x; } = Free((Vy)o) N {z1,...,z,}.

We consider two cases:

3. SYNTAX AND SEMANTICS DON'T ALWAYS PLAY WELL TOGETHER 13
— Case 1: If y ¢ U, <, Var(si) then

— Case 2. If y € U, ;<, Var(s;) then:
(Vy)o[s/x] = (Y2)(@[Siyy - - - Sips 2/ Tiys -+ Tiy s Y)])
e (Jy)¢[s/z] is defined similarly.
Exercise 3.2.6. Write out the definition of (Jy)4[s/7].

The main result of this section is the following:

THEOREM 3.2.7 (The Substitution Lemma). Let xq,...,x, be distinct variables,
S1,-..,8p terms and o : Var — M an assignment. For every first-order formula
¢ we have that:

ME (¢[5/7])[a] if and only if M F ¢ [Oé(sz[a})/xl,...,(sm[a])/xn]

Yeah, you're right, I should explain what is happening here. This is really the
desideratum I put forward at the beginning of this whole story.

Recall that if s is a term and « is an assignment then s™[a] is an element of M
(namely the element where all variables in s have been assigned values by « and all

non-logical symbols in s are interpreted as M intended.

So, for our given assignment «, each of s{[a], ..., sM[a] is an element of M. More-

’ren

over, we have a way of changing up assignments at specific values, explicitly,

a(y) ifyé¢{xy,...,z,}

sMla] ify = ;.

asf/l[a]/zl sMla)/zn (y) = {

So this assignment here first evaluates each of the terms s; according to the a we
started with and then replaces the value that « gives to each x; with the value it
computed for s;.

So the RHS says: Compute the values that the terms s; take under a and then
substitute all the variables in ¢ plugging in these terms where appropriate. The LHS
says: Substitute the variables in ¢ with the terms s; and then evaluate using a. As
we saw before, if we're not careful about our substitutions, this need not be the case.

14 CHAPTER 3. FIRST(-ORDER) THINGS FIRST (CONT'D)

PROOF OF THE SUBSTITUTION LEMMA. First, we show that if 7" is an L-term
then:

This is the usual case-by-case induction argument:

e If t is a variable y we have

(yls/2))M[a] = {a(y) ity ¢ {20, 20}

sMla] if y =z

(2

=y

e If t is the constant symbol ¢, then:

(t[g/i’])M[Q{] = CM = tM [as{w [a]/z1,..., s [cx]/mn]

o If ¢ is of the form f(t1,...,%,), for an m-ary function symbol f € Fun(L)

and terms tq,...,t,,, then we have:
(f(tms - tw)[5/2)M [0 = [(([s/2) M, - ., (Enl5/7]) M]a])
= <(tm)M[%{\4[a1/z1 sMpalends - (bm) M 0mpag oy snM[a]/xn]>

Now for atomic formulas:
e {; = ¢y is immediate from the above.
e R(ty,...,t,) — See next exercise.

Finally, for formulas proper, there are a few cases to consider. I'll only do the hard
case and leave the rest as exercise.

o Oy Ao, 01V o, b1 — ¢, m¢1, and (Jy)¢ — See next exercise.

o (Vy)o. Let {z;,,...,x; } = Free((Vy)¢) N {z1,...,2,} There are two cases
to consider:

e Case 1: If y ¢ U,,,, Var(si) then, by definition:

(Vy)ol5/7] = (Vy)(@lsirs - - s iy [Tirs - 23]

3. SYNTAX AND SEMANTICS DON’T ALWAYS PLAY WELL TOGETHER 15

In particular, we have that:
M E ((Yy)o[5/7])[a] iff for all b € M we have M E (¢[5/])[owy]

iff for all b c M we have M E ¢ [a(sx[ab/y})/xil (Sf\;[ab/y])/wik

where we have also used that y does not occur in any of the s; to get from
the second line to the third (by Lemma 2.1.7), i.e. to get that:
si'lawyy]) = 53, '[a])
and that x;,,...,z; are the only free variables of (Vx)¢; to get from the
third line to the fourth (by Theorem 2.2.7).
e Case 2. If y € U, ., Var(si) then:

(vy>¢[§/i‘] - (VZ>(¢[Si17 o Sigs Z/Iil, cees Ligs y])
In particular, we have that:
ME ((Vy)ols/z)]e] Hf ME (V2)(dlsiy, - 800 2/ @i @i 4]
iff for all b € M we have M E (¢[si,, ..., 5, 2/Tiy, -, Ty, y)) [y

[RRS} Sik

[
iff for all b - M we have ./\/l = qb [M[Oéb/z] /Izl (M[ab/z])/mik7(ZM[ab/z])/y):|

iff for all b € M we have M F ¢ |«

where, again we’ve used the same facts as in the other case to go down the
bi-implications, also noting that (2M[ay,.]) = b, by definition.

O

Exercise 3.2.8. Finish up the unwritten cases in the proof of the Substitution
Lemma.

The next, and final lemma before we move on up to better and bigger things says
something obvious, if we change a variable in a formula for a fresh variable and then
change it back to the original variable, then we achieved nothing. The proof is left
as an exercise.

16 CHAPTER 3. FIRST(-ORDER) THINGS FIRST (CONT'D)

Lemma 3.2.9. Ify is a variable with no occurrence in ¢ then (ply/x])[x/y] = ¢.

Proor. HW4 O

	Chapter 3. First(-order) things first (Cont'd)
	2. Semantics
	3. Syntax and semantics don't always play well together

