CHAPTER 4

Sounds like things are complete (Cont’d)

6. Back to Semantics: Baby’s first steps in model theory

We've learned a lot about L-structures (for a fixed first-order language £), but since
we will at some point try to do mathematics with them, besides just L-structures
it’s important to see how L-structures are related, that is, we really need to discuss
“C-maps” (whatever these may be).

In HW4 Q.3 we defined the notion of an L-substructure. Let’s talk a bit more about
maps now.

6.1. Embeddings of the basic and the elementary kind. If L-structures
generalise groups and graphs and fields and vector spaces, or whatever, then £-maps
really should generalise group and graph and field and vector space or whatever
“morphisms” (so group homomorphisms, graph homomorphisms, field embeddings,
linear maps or whatever).

Definition 6.1.1. Let £ be a first-order language and M and N be L-structures.
A map h: M — N is an L-homomorphism (sometimes denoted h : M — N) if:
(1) For all ¢ € Const(£) we have that h(c™) = V.
(2) For all n-ary R € Rel(£) we have that:
If RM(ay,. .., ay) then RN (h(ay), ..., h(ay)),
for all aq,...,a, € M.
(3) For all n-ary f € Fun(£) we have that:
W fM(ay, ... an) = N (h(ay),. .., han)),
for all a4,...,a, € M.

We call a homomorphism h : M — N an L-embedding if h is an injective L-
homomorphism which satisfies the following stronger version of (2):

(2)” For all n-ary R € Rel(£) we have that:
1
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RM(ay, ..., a,) if and only if RN (h(ay),...,h(a,)),

for all ay,...,a, € M.

Exercise 6.1.2. Let M and N be L-structures, with M C N. Show that M is a
substructure of N if an only if the inclusion map ¢ : M — N is an L-embedding.

Definition 6.1.3. An L-isomorphism is just a surjective L-embedding. If there is an
L-isomorphism from an £-structure M to an L-structure N, then we say that M and
L are L-isomorphic, denoted by M ~ N. An L-automorphism is an L-isomorphism
from an L-structure M to itself.

Exercise 6.1.4. Let Aut(M) denote the set of all L-automorphisms of an L-structure
M. Prove that Aut(M) is a group, under function composition.

In model theory, we are interested in definable sets, that is, subsets of (some Cartesian
power of ) the domain of an L-structure M which are given by realisations of some
formula, that is, subsets of the form:

{(al,...,an) GMHZM':(b[ala---?an]}>

for some L-formula ¢(xy, ..., z,).

Example 6.1.5. Let G = (V; E) be a graph, then the set of pairs of vertices which
are connected by a path of length 2 is the following definable set:

{(v1,02) € VZ: (Fy)(E(x1,y) A E(y, )}

Exercise 6.1.6. Let N be the standard model of Peano arithmetic (in the usual
language). Show that the set of all primes is definable.

It should be clear that £L-embeddings do not necessarily preserve definable sets (in
the definition of an £-embedding, we only ask that it preserves sets defined by atomic
formulas!). We thus need a stronger version of an embedding.

Definition 6.1.7. Let £ be a first-order language, M and N be L-structures. An £-
embedding h : M — N is called elementary (or in full an L-elementary embedding)
if for every L-formula ¢(z1,...,z,) we have that:

ME ¢lay, ..., a,] if and only if N E ¢[h(aq),...,h(a,)].

If M C N and the inclusion map is an L-elementary embedding, then we say that
M is an L-elementary substructure of N, which we denote by M < N/,
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You have essentially dealt with the following example in HW3:
Example 6.1.8. In the language of groups, (Z;0,+) is a substructure of (Q, 0, +)
that is not elementary. Similarly, in the language of fields, (Q;0, 1,4, x) is a sub-

structure of (R; 0, 1, +, x) that is not elementary. On the other hand, in the language
of linear orders, (Q, <) is an elementary substructure of (R; <).

Exercise 6.1.9. Show that every L-isomorphism is an L-elementary embedding.
We now come to a really confusing bit of terminology:

Definition 6.1.10. Let M and N be two L-structures. We say that M is elemen-
tarily equivalent to N if for every L-sentence ¢ we have that:

ME ¢ if and only if N F ¢.
We denote this by M =N

Remark 6.1.11. Here is a bunch of facts:
(1) If M ~ L then M = N.
(2) f M N then M =N,
(3) Tt is not the case that if M =N and M C N (i.e. M is an L-substructure
of N') then M g .

Exercise 6.1.12. Find an example of a substructure A/ and a substructure A/ which
are elementarily equivalent, but so that M is not an elementary substructure of N.

This is thus a terribly unfortunate choice of words. The problem is that the word
elementary can refer to both “basic” and “of elements”. The way to think about it(
or at least, the way [ think about it) is the following:

e Elementary equivalence refers to the “basic” meaning of the word elementary
— elementary equivalence is the most basic form of equivalence we can ask.

e An elementary embedding is an embedding that respects what happens to
the “elements”.
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6.2. The Lowenheim-Skolem Theorems. It is clear that the terms elemen-
tarily equivalent and elementary substructure do not mean exactly what we’d like
them to mean. Our first result (not covered in class, so not examinable) is a test that
allows us (rather practically) to determine if a substucture is, in fact, elementary.

THEOREM 6.2.1 (The Tarski-Vaught test). Let N be an L-structure and M a sub-
structre of N'. Then, the following are equivalent:

(1) M N.

(2) For every L-formula ¢(x1,...,x,,y) and all elements ay,...,a, € M we
have:

IfNE@y)(@lar/zy, - an/n])(y) then ME By)(dlar/z1, .- an/za])(y)

Remark 6.2.2. The notation (Jy)(dlar/z1,...,a,/x,])(y) will get tedious. Let’s
just write (Jy)op(aq, ..., an,y), and pretend we're okay with it.

PROOF. (1) = (2) is trivial, so we just do (2) = (1). By definition, we have
to show that for any formula ¢ (z1,...,x,,) and all by, ..., b, in M we have that:
ME ¢(by, ..., by) if and only if N'E ¢(by, ..., by).

The proof will be by induction on the complexity of ¢ and without loss of generality,
we may assume that ¢ does not contain any V quantifiers [WHY?|. The Boolean cases
are easy, so we need only worry about the case where v starts with an existential
quantifier. This case follows easily by inductive hypothesis (i.e. exercise). ([l

And now for an application of the Tarski-Vaught test:

THEOREM 6.2.3 (Downward Lowenheim-Skolem Theorem). Let M be an L-structure,
A C M and suppose that |M| > |L|+Rg.! Then, there is an elementary substructure
My of M that includes A and such that | M| = max{|Al, |L] + No}.

PROOF. We may assume that |A| > |£|+Ng, by arbitrarily adding more elements

to A (recall M is assumed to be big enough for us to do this). The following is just
a little bit of counting:

CrLaM 1. If B C M has |B| > |L£]| + Ny, then [(B)| = |B|.

Proor or CLAIM 1. Exercise. |

1f you're going about this assuming that £ is countable you need only assume that M is infinite.
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We (inductively) build a chain:
A=A CA CAC- -

of subsets of M all of which have cardinality equal to |A|. Once A,, has been built,
we build A, as its closure under existential formulas with parameters. Loads of
words, let’s be explicit:

e For every formula ¢(xq,...,z,,y) and every sequence aq,...,a, € A,, if
ME Jyé(ay, ..., am,y), then we choose an element ¢y 4, 4, € M witness-
ing this existential formula, i.e. such that:

ME ¢lar, ..., am, Coar....aml-

e Let B, be the following set:

Bn = An U U{C¢,a1,...,am}a

where the big union ranges over all m € N and all formulas ¢(z1, ..., Zm,y)
and all a,...,a, € A, such that M E Jyo(ay,...,an,y). Observe that
|B,| = |A,| = |A|, by induction.

o Let A1 = (By). Then |A,41| = |B,| = |A|, by the claim and the previous
bullet.

Now, take My = (J,cy An- This clearly has cardinality equal to that of A, so we
just need to show that it is an elementary substructure. In fact, it suffices to show
that it satisfies (2) in the Tarski-Vaught test. But this is easy by construction, since
for any L-formula ¢(z1,...,2,,y) and any ay, ..., a, € My such that:

M = (Ely)(b(ala coey Oy, y)7

there is some n € N such that aq,...,a,, € A,, and thus there is some witness in

An+1 . O

Hoorah! We can go down. Let’s see how we can go up (again, the only part of this
section that we discussed in class was the main theorem).

Let M be an L-structure and A C M. We write £(A) for the language £ expanded
by a fresh constant symbol for each element of A, that is Rel(£(A)) = Rel(L),
Fun(£(A)) = Fun(£) and Const(L(A)) = Const(L)U{a : a € A}. We may canonically
view M as an L(A)-structure M’, by interpreting each new constant symbol a €
Const(L(A)) \ Const(£) as the element it should represent (What?), i.e. a™ = a
(this is where the underlying and superscripting gets confusing).
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Then, elementary diagram of M, denoted ElDiag(M) is the set of all L(M)-
sentences ¢(ay, .. .,a,), where ¢(z1, ..., x,) is an L-formula, a,, ..., a, € Const(L(A))

) =n

and M E ¢[ay, ..., a,].> We denote this by EIDiag(M). In future terms, EIDiag(M)

is the “complete theory” of the expansion of M to the canonical £(M )-structure.

Remark 6.2.4. In the notation above, let N be an L(M)-structure such that N E
EIDiag(M), and let N be the reduct of N' down to £ (i.e. the structure obtained
by forgetting all symbols in £(M)\ £). For each a € M, let g(a) denote o (i.e. the
interpretation of a in N*). Then, g is an injective [Why?] map from M to N such
that for every formula ¢(zy,...,z,) of £ we have that:

ME @lay, ..., a,] if and only if N F ¢[g(a1),...,g(a,)],
for any ai,...,a, € M. Thus, ¢ is an elementary embedding of M into N3

So what’s so cool about elementary diagrams?
THEOREM 6.2.5. Every infinite L-structure M has a proper elementary extension.

PROOF. Let ¢ be a fresh constant symbol not in £(M), and consider the theory:
EIDiag(M)U{=(c=a) :a € M}.

It suffices to show that this set is satisfiable. This is immediate, by compactness. [

The Upward Lowenheim-Skolem Theorem is the slightly more general version of the
theorem above:

THEOREM 6.2.6 (Upward Lowenheim Skolem). Let M be an infinite L-structure and
k > max{|M|,|L]|+Ro}. Then there is an elementary extension N = M of M with
V| = k.

PROOF. Exercise. [Hint. Adapt the previous proof and use the other Léwenheim-
Skolem theorem.| O

2Why elementary? Well because there is also a notion of a diagram (without the word elementary),
Diag(M), which is the same, but only for quantifier-free formulas.

?’Actually7 N is an elementary extension of a structure isomorphic to M, but if we squint hard
enough (and don’t worry about formalities that can be handled) what I said in the main body of
the text should be satisfactory.
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