
CHAPTER 5

What’s a computer, anyway?

We will now turn our attention to decision problems and algorithms. I kind of
hinted at decision problems, when after the proof of the completeness theorem for
propositional logic I discussed a “Decidability Theorem”. The keen-eyed amongst you
may have noticed that in many ways the Completeness Theorem for first-order logic
was kind of similar to that of propositional logic, but when we finished the proof of
that we sure didn’t seem to mention any decidability results.

Intuitively, a decision problem is some kind of “formal yes or no question”. An
example of a decision problem is:

Given: A graph G and a natural number k.
Decide: Is there a k-colouring of G.

another decision problem, the one that I was just talking about in the previous
paragraph is the following:

Given: A complete first-order theory T and a sentence ϕ.
Decide: Does T ⊢ ϕ?

We will for a minute say that such a decision problem is decidable if there is a
computer program that given any instance of the problem can tell us if the answer
is Yes or No. At this point if we want to be serious in our discussion of decision
problems we should really decide what a computer is.

Well... I’m sure you all know what a computer is. In fact, when I learned logic
everyone knew what a computer was. That being said, I’m pretty sure that when
the professor that taught me logic learned logic computers were a more mysterious
object. And knowing who taught that professor logic, I’m sure that when they were
learning logic computers were really a thing that mostly logicians knew about. In
any case we really need a (hardware-free) “mathematical model of computation”.
Soon we’ll see that the exact model we pick doesn’t reaaaaally matter, but let’s take
things one step at a time.

1



2 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY?

1. A step-by-step guide to computation

We’ll start by discussing two abstract mathematical models of computation, just to
see why this sucks.

1.1. Register Machines. This model of computation is due to Minsky and
feels a bit closer to a modern-day computer than a Turing Machine (although the
rule of cool prevents me from writing a chapter on models of computation which does
not define, even in passing, Turing machines). Anyway, a register machine is built
out of two parts. We can think of them as the “hardware” part and the “software”
part, respectively.

The registers :

• A (finite) set R1, . . . , Rm of registers each of which may at any time hold
some natural number.

The instructions :

• A finite set L1, . . . , Ln of instructions.

Each instruction is given a label Li ∈ N and can be one of the following:

(1) Li: Let Rj := Rj + 1 then “Go to instruction Lj”.

(2) Li: If Rj = 0
then “Go to instruction Ll”
else “Let Rj := Rj − 1” and go to Lk.

(3) Ln: Halt.1

This is already starting to look a bit like a computer program in a very basic language.
Indeed, this is pretty much how low-level code works to this day, it sees the contents
of the RAM of our computer (or whatever), i.e. the registers, and has a very limited
set of instructions.

Pictorially, we can think of instructions of the form (1) and (2) as:

Li Lk Li Lk

Ll

Rj+1 Rj−1

Rj=0

1Halt is just posh for stop running. We’ll always assume that this is the last instruction of our
machines.



1. A STEP-BY-STEP GUIDE TO COMPUTATION 3

In part, Church’s Thesis (see later) says that any computer program, in any pro-
gramming language, can be translated into the program of a register machine. More
on that in a bit. For some terminology, to see how computation happens:

Register machines have finite programs, hence they will always use a finite number
of registers in any single computation. In fact, the number of registers a machine
can use is bounded above by the number of instructions it has (namely a register
machine with n instructions can access at most n registers). However it does not hurt
to imagine that our register machines have infinitely many registers at their disposal.2
Thus, we can identify register machines with their program, and can forget about
the number of registers. At some point when the distinction will start to matter, we
will assume that register machines with n instructions only use registers R1, . . . , Rn.
Then:

• A state of a register machine is a sequence s = (n1, n2, . . . ) of natural
numbers, where we understand that ni is the content of register Ri. By
assumption, there is some N ∈ N such that for all n ≥ N , we have that that
sn = 0.

• A configuration of a register machine R = (L1, . . . , Ln) is a pair (si, Lji),
where si is a state and Lji is one of the instructions of R.

• A run of a register machine R is a possibly infinite sequence of configurations
(s1, L1), (s2, Lj2), . . . , starting from (s1, L1) where state si+1 is obtained from
state si by applying instruction Lji , which also tells us to go to instruction
Lji+1

. More precisely, if si is (n1, n2, . . . ) then we obtain (si+1, Lji+1
) as

follows:

– If Lji is:
Let Rj := Rj + 1 then “Go to instruction Lj”,

then
si+1 is (n1, . . . , nj−1, nj + 1, nj+1, . . . ) and Lji+1

is Lj.

– If Lji is:
If Rj = 0

then “Go to instruction Ll”
else “Let Rj := Rj − 1” and go to Lk.

then

∗ in the former case si+1 is si and Lji+1
is Ll. and

2Think formulas and variables!



4 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY?

∗ in the latter case si+1 is (n1, . . . , nj−1, nj − 1, nj+1, . . . ) and Lji+1

is Lj.

– If Lji is:
Halt,

then
The machine stops the computation.

We say that a run terminates or halts if Lji = Halt for some i ∈ N. In that case,
we call si the final state of the run. We, of course, call s1 the initial state of the
run.

That’s all good and well, but I’m pretty sure we should do some examples at this
point.

Example 1.1.1. Here is a register machine that adds the contents of R2 to R1:

Halt

L1 L2
R2−1

R1+1

The instructions of this register machine are of course:

• L1: If R2 = 0 then “Go to L3” else “Let R2 := R2 − 1” and go to L2.

• L2: Let R1 := R1 + 1 then “Go to L1”.

• L3: Halt.

To make sure we understand this, let’s do a run. Suppose that the initial state of
our register machine is (2, 2, 0, 0, . . . ). Then a run from this state would be:

• ((2, 2, 0, 0, . . . ), L1),

• ((2, 1, 0, 0, . . . ), L2),

• ((3, 1, 0, 0, . . . ), L1),

• ((3, 0, 0, 0, . . . ), L2),

• ((4, 0, 0, 0, . . . ), L1),

• ((4, 0, 0, 0, . . . ), Halt),

This is already getting rather annoying to write. Let’s agree on some conventions:



1. A STEP-BY-STEP GUIDE TO COMPUTATION 5

We will write:
Li : (Rj,+, Lk)

as shorthand for:

Li: Let Rj := Rj + 1 then “Go to instruction Lk”.

and
Li : (Rj,−, Lk, Ll)

as shorthand for:
Li: If Rj = 0
then “Go to instruction Ll”
else “Let Rj := Rj − 1” and go to Lk.

So, in this notation, the register machine from before becomes:

• L1 : (R2,−, L2, L3)

• L2 : (R1,+, L1)

• 3 : Halt

To reiterate a point made earlier, register machines have many registers but only a
few of them matter. We’ll keep track of this as follows: Given a register machine R,
we will think of a certain initial segment of the registers as the input registers and
we’ll think of the remaining registers as the scratch registers.

Definition 1.1.2. Let f : Nm → N be a function. We say that f is register ma-
chine computable if there is a register machine R = (L1, . . . , Ln) with input regis-
ters R1, . . . , Rm such that for all x1, . . . , xm ∈ Nm the run of R with initial state
(x1, . . . , xm, 0, 0, . . . ) terminates with final state (f(x1, . . . , xm), 0, 0, . . . ).3

Let’s look at some register machine computable functions:

Example 1.1.3. Here’s a program that computes n1−n2 if n1 ≥ n2 and 0 otherwise:

3That our register machines clean up after themselves, i.e. delete all contents of R2, R3, . . . is
a purely cosmetic assumption, but it makes life easier. Observe that a register machine with n
instructions will access at most n− 1 registers. Thus, given a register machine with n instructions
we can append to it register machine code that replaces Halt with instructions that start at R2

and empties the contents of all n− 2 registers that were used in the computation, before Halting.



6 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY?

Halt

L1 L2
R2−1

R1−1

The function we defined in the example above is a rather important function when
dealing with natural numbers, we call it restricted subtraction and denote it by
−̇. Explicitly, this is the function N× N → N defined as follows:

x −̇ y :=

{
x− y if x ≥ y

0 otherwise.

Think of this function exactly in terms of the register machine we defined above. It
subtracts from x as much of y as possible. It stops when there’s no more of y to
subtract or if by subtracting from x it’s hit 0.

Let’s see how we can put our register machines together to compute more complicated
things:

Proposition 1.1.4. The following functions are register machine computable:

(1) The function S : x 7→ x+ 1.

(2) The constant function 0.

(3) For each n ∈ N and each i ≤ n the function:

Nn → N
(x1, . . . , xm) 7→ xi

Proof.

(1) Well this one is easy: L1 : (R1,+, L2), L2 : Halt.

(2) This one is also easy: L1 : (R1,−, 1, L2), L2 : Halt.

(3) Here we may have to do a bit more work. Well, for n = 1 the program
L1 : Halt does the trick. For n ≥ 1 we need to write a program that empties
R1 and then transfers the contents of Ri to R1. This can be done as follows:



1. A STEP-BY-STEP GUIDE TO COMPUTATION 7

Halt

L1 L2 L3

R1−1

Ri−1

R1+1

□

Exercise 1.1.5. Prove that + is register machine computable.

That was pretty fun. Now that we have a few register machine computable functions,
let’s see some ways that we can put them together. From now on, we’ll be a little bit
informal when discussing register machines. Rather than writing out their full code or
their full diagram, we’ll simply describe their procedure (think pseudo-pseudocode)
and trust that we could write them out formally.

Proposition 1.1.6 (Closure under composition). Let f1, . . . , fm : Nn → N and
g : Nm → N be register machine computable. Then, so is:

h : Nn → N
(x1, . . . , xn) 7→ g(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

For short, we will denote h by g(f1, . . . , fm).

Proof. Let R1, . . . , Rm be the register machines computing f1, . . . , fm respec-
tively and R the register machine computing g. We use the register machine from
Example 1.1.1 to copy the contents of R1, . . . , Rn to to Rn+1, . . . , R2n+1 and then
run the computation of R1 with all registers transposed n to the right. After this
computation, Rn+1 contains f1(x1, . . . , xm). We repeat the same process, copying
the contents of R1, . . . , Rn to Rn+2, and then run the computation of R2, with all
registers transposed 2 to the right. After we have done this for each i ≤ m, we have
that Rn+i contains fi(x1, . . . , xn). We then empty R1, . . . , Rm and move the contents
of Rn+i to Ri. We then run the computation of R. □

The proof of the above would be too mean to have you do in an exercise, but make
sure you understand what the content of the few lines above is.



8 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY?

Proposition 1.1.7 (Closure under primitive recursion). Suppose that f : Nk → N
and g : Nk+2 → N are register machine computable. Then, so is:

h : Nk+1 → N

(x1, . . . , xk+1) 7→

{
f(x1, . . . , xk) if xk+1 = 0,

g(x1, . . . , xk, xk+1 − 1, h(x1, . . . , xk, xk+1 − 1)) otherwise.

Before we prove this, let’s try to think about what this says. We have shown
that + is register machine computable. By closure under composition, the func-
tion (x1, x2, x3) 7→ x1 + (x2 + x3) is also register machine computable. Let’s define a
function:

h : N2 → N

(x1, x2) 7→

{
0 if x2 = 0,

x1 + x1 + h(x1, x2 − 1) otherwise.

We have just shown that multiplication is register machine computable!

Exercise 1.1.8. Using ideas similar to the above prove that exponentiation is register
machine computable.

In the context above, we say that h is defined by recursion with initial condition
f and recursive step g.

Proof (Sketch). This is an exercise in transforming recursive definitions into
“while loops”. Register machines can easily be seen to be able to simulate while loops.
Indeed, the loop:

while n > 0 {

Do a register machine computable procedure (that may depend on n)

let n = n− 1

}

Is almost by definition:

• L1: If Rn = 0 go to Lk otherwise Rn = Rn − 1 and go to L2

• L2: Let Rn = Rn + 1 go to L3

• L3: Run register machine code that terminates at instruction Lk−1. Replace
instruction Lk−1 with:



1. A STEP-BY-STEP GUIDE TO COMPUTATION 9

• Lk−1: If Rn = 0 go to Lk otherwise Rn = Rn − 1 and go to L1

• Lk: Halt

An easy adaptation of the argument above let’s us write loops of the form:

while n < x {

Do a register machine computable procedure (that may depend on n)

let n = n+ 1

}

for some fixed x ∈ N in terms of register machine instructions.

Here’s a way to compute h. Move the contents of R1, . . . , Rk+1 to R3, . . . , Rk+3 and
empty R1 and R2. In the pseudocode below I will identify x1, . . . , xk, xk+1 with the
initial inputs of R and ni with the contents of register Ri;

Compute f(x1, . . . , xk)

Store the result at register R1

while n2 < xk+1 {

Compute g(x1, . . . , xk, . . . , n2, n1)

let R2 = R2 + 1

Store the result at register R1

}

It is easy to check that this computes h. □

1.2. Turing Machines. Ah the rule of cool. Ever since the Imitation Game4

everyone knows about Alan Turing (which is a good thing), but also everyone expects
to hear something about Turing Machines when learning logic (which is maybe a
less good thing?). Let’s just give a rather informal description of what a Turing
Machine is composed of:

• A tape (broken up in blocks) on which we can read or write letters from a
fixed alphabet.

4Or like ever since the British government decided to release the Bletchley files in the 70s and also
that being gay was okay (which unsurprisingly happened MUCH later). Like genuinely, the latter
happened in your lifetimes.



10 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY?

• A head which can read and write on the tape.

• A set of states (which depend on what the head has read on the tape), with
a designated initial state and a designated set of final states.

• A transition function, a partial map from the set of pairs consisting of
non-final states and possible inputs (stuff the head may be reading) to the
set of states possible outputs (stuff the head could write) and an instruction
to the head to move left or right on the tape.

You can (and should) think of a Turing machine as a version of cavepeople computer!

Here’s a way of drawing a Turing Machine, with alphabet {0, 1} (the ⊥ symbol
meaning an unused square), and the head in state q0 ∈ Q:

· · · ⊥ ⊥ 0 1 1 0 1 1 ⊥ · · ·
q0

The precise running of a Turing machine is more or less the obvious thing (it starts
at an initial state with some input, runs its transition function, and maybe reaches
a final state, at which point, whatever is on the tape is its output).

If, say in the example above, the transition function said that on state q0 if the input
is 0, then “write 1 and move to the right, and go to state q2 we’d have:

· · · ⊥ ⊥ 1 1 1 0 1 1 ⊥ · · ·
q2

The real important thing, is the following fact, which I implore you to think about
(even without a formal definition of a Turing machine):

Fact. A function is register machine computable if and only if it is Turing machine
computable.5

End of digression

5This means what you think it means.


	Chapter 5. What's a computer, anyway?
	1. A step-by-step guide to computation


