
CHAPTER 5

What’s a computer, anyway? (Cont’d)

2. Recursive functions are defined one step at a time

2.1. The Basics. Now that we’ve talked about models of computation, we’d
like to figure out what kinds of functions they can compute. Functions will be at the
heart of our discussion, so I’d like to have some handy notation for them. Let’s fix
some.

For n ∈ N we will write Fn for the set {f : Nn → N : f is a function}, and we will
write F for

⋃
n∈NFn. I’ll be using a little bit of λ-calculus notation in this chapter.

Namely, if f ∈ Fn, then I’ll write:

f = λx1 · · ·xn.f(x1, . . . , xn).

If this notation is confusing to you, don’t worry too much about it. In any case,
the main advantage it has is that it easily allows us to see functions of multiple
arguments as sequences of functions of one argument. For example:

λx1x2.f(x1, x2) = λx1.(λx2f(x1, x2))

and that it allows us to pass functions to other functions as variables (i.e. it makes
writing composition of functions easy). For example:

(λx.f(x))(λx.g(x)) = λx.f(g(x)).

Anyway, whatever.

The most basic functions in F are the following:

• The successor function S = λx.x+ 1.

• The nullary constant function C0
0 which is always equal to 0, for nota-

tion’s sake C0
0 = λx.0.

• For every n ∈ N and every i ≤ n the function P n
i , that given an n-tuple

returns its i-th coordinate, we call these the projection functions. In our
λ notation:

P n
i = λx1 . . . xn.xi.

1

2 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

The set of basic functions B ⊆ F is the following set:

B := {S} ∪ {C0
0} ∪

(⋃
n∈N

{P n
i : i ≤ n}

)
.

Exercise 2.1.1. Show that if f ∈ B, then f is register-machine computable.

2.2. Primitive Recursive Functions.

Definition 2.2.1. The set of primitive recursive functions, E ⊆ F , is defined by
induction, as follows:

(1) B ⊆ E .

(2) If f1, . . . , fm ∈ E ∩ Fn and g ∈ Fm ∩ E , then the function h defined by:
h : Nn → N

(x1, . . . , xn) 7→ g(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

is also in E .

(3) If f ∈ Fn ∩ E , g ∈ Fn+2 ∩ E , then the function h defined by:

h : Nk+1 → N

(x1, . . . , xk+1) 7→

{
f(x1, . . . , xk) if xk+1 = 0,

g(x1, . . . , xk, xk+1 − 1, h(x1, . . . , xk, xk+1 − 1)) otherwise

is also in E .

(4) That’s it.

Let’s fix some terminology/notation:

• If S is a set of functions satisfying (2) then we say that S is closed under
composition. We write g(f1, . . . , fn) for the function h defined in (2).1

• If S is a set of functions satisfying (3) then we say that S is closed under
primitive recursion.

• For each n, k ∈ N we let Cn
k denote the constant function λx1 · · ·xn.k.

Some first steps:

1I think I’ve said this before.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 3

Lemma 2.2.2. The following functions:

(1) Cn
k for all k, n ∈ N.

(2) λxy.x+ y

(3) λxy.x · y.

(4) λxy.xy.

(5) λxy.x −̇y (Recall: −̇ is the bounded subtraction function from a while back).

are primitive recursive.

Proof. Let’s do some of these for practice:

(1) Trivial.

(2) Let h be the function defined by recursion as follows:

h : N2 → N

(x, y) 7→

{
P 2
1 (x, y) if y = 0

P 3
3 (x, y, S(h(x, y − 1))) if y>0.

We can prove by induction that this h(x, y) = x+ y, and we will do so, but
first, observe that the way I’ve written this function is very convoluted, just
to fit it exactly with the definition. An easier way of writing this would be:

h : N2 → N

(x, y) 7→

{
x if y = 0

S(h(x, y − 1)) if y>0,

observing that since primitive recursive functions are closed under compo-
sition and contain projections, we can view any f ∈ E ∩ Fp as a function
f ∈ E ∩ Fq, for any q ≥ p.

Now to prove that h(x, y) = x + y. We do so by induction on y. If y = 0
then h(x, y) = h(x, 0) = x = x + 0. For the inductive step, suppose that
y > 0 and h(x, y − 1) = x+ (y − 1). Then:

h(x, y) = S(h(x, y − 1)) = S(x+ (y − 1)) = (x+ (y − 1)) + 1

= x+ y.

4 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

(3) Now that we have shown that addition is primitive recursive, we can just
use it. Let h be the function defined by:

h : N2 → N

(x, y) 7→

{
0 if y = 0

x+ h(x, y − 1) if y>0,

The proof is the same inductive argument. The base case is trivial. For the
inductive step, think about the following for a few seconds:

h(x, y) = x+ h(x, y − 1) = x+ x× (y − 1) = x× ((y − 1)) + 1)

= x× y.

(4) Exercise.

(5) First, let h0 be the function:

h0 : N → N

x 7→

{
x if x = 0

x− 1 if x>0.

Of course, this is just λx.x −̇ 1. Now, we can define our function proper:

h : N2 → N

(x, y) 7→

{
x if y = 0

h(x, y − 1) −̇ 1 if y>0.

□

At this point, you really should be thinking back to register machines and the “clo-
sure” properties we proved.

Theorem 2.2.3. Every primitive recursive function is register machine computable

Proof. We’ve actually already shown this in Proposition 1.1.4, Proposition 1.1.6,
and Proposition 1.1.7. □

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 5

We naturally extend our definition to subsets of Nn. Recall that we can associate
every subset Y of a set X with its characteristic function 1Y , which is the function:

1Y : X → {0, 1}

x 7→

{
1 if x ∈ Y

0 otherwise.

Some people call this the indicator function of Y .

Definition 2.2.4. Let X ⊆ Nn. We say that X is primitive recursive if its charac-
teristic function 1X is primitive recursive.

Example 2.2.5. The set N>0 is primitive recursive. Indeed:

1N>0 = 1 −̇ (1 −̇ x).2

The set X = {(x, y) ∈ N2 : x < y} is primitive recursive. Indeed:

1X = 1N>0(y −̇ x).

Let’s prove some properties of primitive recursive functions and sets. The next
lemma will be extremely useful later on both in that it will allow us to build tones
of primitive recursive functions but also in that (if we read between the lines) it is
starting to show us where the limitations of primitive recursion lie.3

Lemma 2.2.6.

(1) The set of primitive recursive functions is closed under permutations of vari-
ables.

(2) If X ⊆ Nn is primitive recursive and f1, . . . , fn ∈ Fp are primitive recursive,
then so is the set {(x1, . . . , xp) : (f1(x̄), . . . , fn(x̄)) ∈ X}.

(3) The set of primitive recursive subsets of Nn contains ∅, Nn, and is closed
under ∪,∩ and relative complements.

(4) Definition by cases: Let A1, . . . , Ak be a partition of Np into primitive
recursive sets and let f1, . . . , fk : Np → N be primitive recursive. Then, the

2This is either clever or stupid, but I’ll let you decide.
3The word bounded will appear multiple times.

6 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

function:
f : Np → N

(x1, . . . xp) 7→


f1(x1, . . . , xp) if (x1, . . . xp) ∈ A1

f2(x1, . . . , xp) if (x1, . . . xp) ∈ A2

...
fk(x1, . . . , xp) if (x1, . . . xp) ∈ Ak

is primitive recursive.

(5) Bounded sums and products: If f ∈ Fp+1 is primitive recursive, then so
are the functions:

λx1, . . . , xn, y.

y∑
i=0

f(x1, . . . , xn, y) and λx1, . . . , xn, y.

y∏
i=0

f(x1, . . . , xn, y)

(6) Bounded µ-operation: Let X ⊆ Np+1 be primitive recursive. Then the
function:

f : Np+1 → N

(x̄, z) 7→

{
0 if there is no t ≤ z with (x̄, t) ∈ X

t0 if t0 is minimal in N s.t. t0 ≤ z and (x̄, t0) ∈ X.

We write f(x̄, z) = µ(t ≤ z). ((x̄, t) ∈ X).4

(7) Bounded quantification: If X ⊆ Np+1 is primitive recursive, then so are:

Xe := {(x1, . . . , xp, z) : if there is some t ≤ z s.t. (x̄, t) ∈ X}
and

Xa := {(x1, . . . , xp, z) : if for all t ≤ z we have (x̄, t) ∈ X}.

Proof.

(1) This is trivial, since we can compose in funky ways with projection functions.

(2) The indicator function of the set in question is but the function 1X(f1, . . . , fn)

(3) It suffices to show complements and intersections 1Nn\X = 1
.
= 1X and

1X∩Y = 1X × 1X .
4We write µ for “minimal”. The expression here means that the function returns the smallest t
below z which satisfies a primitive recursive condition. We are talking about a bounded operation,
since we have an upper bound – we’ll only try things up to z.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 7

(4) We simply observe that:

f =
k∑

i=1

1Ai
× fi

(5) For example:
h : Np → N

(x1, . . . , xp, y) 7→

{
f(x1, . . . , xp, 0) if y = 0

f(x1, . . . , xp, y) + h(x1, . . . , xp, y − 1) otherwise.

(6) This one is certainly clever: We set f(x̄, 0) = 0, of course. Then for the
recursive step:

f(x̄, z + 1) =


f(x̄, z) if

∑z
t=0 1X(x̄, t) ≥ 1

z + 1 if
∑z

t=0 1X(x̄, t) = 0 and (x̄, z + 1) ∈ X

0 otherwise.

We have here used both bounded sums and definitions by cases.

(7) It is enough to show Xe is primitive recursive (we can then take comple-
ments). To see this:

1Xe(x̄, z) =

{
1 if

∑z
t=1 1X(x̄, t) ≥ 1

0 otherwise.

□

This lemma lets us see that many many sets we know and love are primitive recursive.
Some of the most lovable ones will be collected in the next corollary.

Corollary 2.2.7.

(1) The set {(x, y) ∈ N2 : y|x} is primitive recursive.5

(2) The set of P ⊆ N of prime numbers is primitive recursive.

(3) The function pr : N → N which on input n returns the (n + 1)-st prime
number is primitive recursive.

(4) There is a primitive recursive bijection pair : N× N → N.

5Here y|x denotes the assertion “x is divisible by y”

8 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

(5) There are primitive recursive functions unpair1 : N → N and unpair2 : N → N
such that:

unpairi(pair(x1, x2)) = xi,

for i ≤ 2.

(6) More generally, for all n ∈ N there are primitive recursive bijections

tuplen : Nn → N

and primitive recursive functions

untupleni : Nn → N

for each i ≤ n such that:

untupleni (tuple
n(x1, . . . , xn)) = xi.

Proof.

(1) First, we see that the function q(x, y) which given (x, y) returns the floor of
x
y

if y > 0 and 0 otherwise is primitive recursive. Indeed:

q(x, y) = (µt ≤ x)((t+ 1)× y > x).

Given this, we have that the characteristic function of the set {(x, y) ∈ N2 :
y|x} is just:

1 −̇ (x −̇ q(x, y)× y).

(2) We know that primes are the numbers greater than 1 that are only divisible
by themselves and 1. Consider the following three primitive recursive sets:

X1 = {x ∈ N : x > 1}

X2 = {(x, y) ∈ N2 : y ≤ 1} ∪ {(x, y) ∈ N2 : x = y} ∪ {(x, y) ∈ N2 : y ̸ |x}
Then, the following set is also primitive recursive:

X3 = {(x, z) ∈ N2 : for all y ≤ z we have z ∈ X2}

And thus, the set

X4 = X3 ∩ {(x, y) ∈ N2 : x = y}

is primitive recursive. Finally, the set:

X1 ∩ P 2
1 (X4)

is primitive recursive, and is, indeed the set of all primes.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 9

(3) After a little bit of thought, we see that:

pr(n) =

{
2 if n = 0

µ(z ≤ pr(n− 1)! + 1).(z > pr(n− 1) and z ∈ P) otherwise,

since there is always a prime strictly between n and n!+ 2 [WHY?]. Now to
elaborate a bit about the shorthand used above, in case you’re very pedantic
like I proudly used to be when I was younger. For every y ∈ N the set:

X>y := {x ∈ N : x > y}

is primitive recursive. Let g(x, y) be the following function:

g(x, y) = µ(z ≤ y)(z ∈ X>y ∩ P)

This is primitive recursive. What we took before was pr(n+1) = g(n, pr(n)).

(4) The map in question is:

pair(x, y) =
1

2
(x+ y)(x+ y + 1) + y.

(5) The map unpair1 is given by

µz ≤ x.(there is t ≤ x s.t. pair(z, t) = x)

and the map unpair2 is defined analogously. I have again used here a similar
shorthand as the one I used in (3).

(6) Immediate from (4) and (5) by induction.

□

Remark 2.2.8. In our proof that the set of all primes P ⊆ N is primitive recursive
I tried to be as formal as possible. For instance, arguing as in that proof, we can see
that for instance the following set is always primitive recursive:

X = {x ∈ N : for all z ≤ x we have z ∈ Y }

for any primitive recursive set Y . More generally, since primitive recursive sets are
closed under Boolean combinations, we can shortcut things a lot.

If you’re worried that the details of parts (4)-(5) went a bit fast, fret not:

Exercise 2.2.9.

(1) Prove that pair is a primitive recursive bijection.

10 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

(2) Prove that unpairi have the required properties (from the statement of the
corollary).

(3) Construct for all n ∈ N the map tuplen and the maps untupleni .

We now have all the tools to define something very crucial for our later exploration
of incompleteness, our primitive recursive way of coding sequences of numbers into
numbers. We’ll do this now that all the ideas are fresh in our heads, and return to
it when we need it:

2.3. Let’s put this here for later. If (x0, . . . , xn−1) ∈ Nn, then we define the
Gödel number of (x0, . . . , xn−1), denoted ⟨x0, . . . , xn−1⟩, as follows:

⟨x0, . . . , xn−1⟩ := pr(0)x0 × · · · × pr(n− 2)xn−2 × pr(n− 1)xn−1 .

and, for the sake of completeness:
⟨⟩ = 1.

Let’s summarise the main properties of this new beast:

Lemma 2.3.1. Gödel numbering lets us define a map from the set of all finite se-
quences of natural numbers to N \ {0} It satisfies the following properties:

(1) The binary component function:
N× N → N

(x, i) 7→

{
xi if x = ⟨x0, . . . , xn−1⟩ and i < n

0 otherwise

is primitive recursive. We write (x)i for the binary component of x.

(2) The length function given by lg(⟨x0, . . . , xn−1⟩) = n is primitive recursive.

(3) For all n ∈ N the map ⟨⟩ ↾Nn→ N is primitive recursive.

(4) For all x ∈ N, lg(x) ≤ x.

(5) For all x ∈ N>0, (x)i < x, for all i ∈ N.

Proof. The bullets here are not that hard once we uncover what they mean.
I’ll let everyone think about them for a bit, before I spoil the fun. □

Anyway, enough Gödel stuff for now. Let’s get back to register machines. It really
should be starting to feel like these primitive recursive fellas are good at capturing
what we can compute using a “computer program”. Unfortunately, it turns out that
there are functions which we can intuitively compute, but are not primitive recursive.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 11

We’ll take a glimpse at one now, to justify the “correct” notion of a computable
function.

2.4. The Ackerman function. We’ll here build a classical example of a func-
tion that is intuitively computable (i.e. we can sit down with pen and paper and
compute it) but is not primitive recursive. It will turn out that this function is reg-
ister machine computable, and once we expand our notion of primitive recursive just
a bit, we’ll get the “right” notion of computation.

We define a map A : N2 → N as follows:

• A(0, x) = 2x, for all x ∈ N.

• A(y, 0) = 1, for all y ∈ N.

• For all x, y we set A(y + 1, x+ 1) = A(y, A(y1, x)).

For each n ∈ N set:
An = λx.A(n, x).

Then, A0 = 2x and, clearly for all n ∈ N>0 we have that

An(0) = 0 and An(x+ 1) = An−1(An(x)).

Two things:

• This shows that the function A : N2 → N exists.

• Each An is primitive recursive.

At this point we’d love to be able to say that A is also primitive recursive, but of
course, we all see the writing on the wall at this point.

Lemma 2.4.1. For all n, x ∈ N we have An(x) > x.

Proof. Easy exercise on induction. □

Corollary 2.4.2. For all n ∈ N, the function An is strictly increasing.

Proof. Well. This is obvious for n = 0. For n > 0 this is by the previous lemma
and the fact that An(x+ 1) = An−1(An(x)). □

Similarly, we can also deduce the following:

Lemma 2.4.3. For all n ≥ 1 and all x ∈ N we have that An(x) ≥ An−1(x).

12 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

A little bit more notation. For k ∈ N set Ak
n to be the function An iterated k times

(i.e. composed with itself k times). Then:

Lemma 2.4.4. The functions Ak
n are all strictly increasing. Moreover:

Ak
n(x) < Ak+1

n (x), Ak
n(x) ≥ x,Ak

n ◦ Ah
n = Ak+h

n ,

and if m ≤ n then Ak
m ≤ Ak

n, pointwise.

Why all of this you may ask... The functions Ak
n provide a pretty fine way of cutting

up the primitive recursive functions in terms of how fast they grow. We say that a
function f ∈ F1 dominates a function g ∈ Fp if there is some N ∈ N such that for
all x̄ ∈ Np we have that:

g(x̄) ≤ f(max{x1, . . . , xp, A}).
Let us define

Cn = {g ∈ F : for some k ∈ N we have that Ak
n dominates g}

You can take the following on faith:⋃
n∈N

Cn = E ,

where recall E is the set of all primitive recursive functions. It’s actually not so hard
to show:

•
⋃

n∈N Cn clearly contains all basic functions.

• By one of the lemmas on Ak
n, it’s easy to deduce that

⋃
n∈N Cn is closed

under composition.

• The crux is showing that
⋃

n∈N Cn is closed under primitive recursion (and
okay fine, that’s actually pretty hard).

Suppose that A ∈ E . Then λx.A(x, 2x) ∈ E =
⋃

n∈N Cn. Then there exist integers
n, k and N such that for all x > N we have that

A(x, 2x) ≤ Ak
n(x)

Thus, for all x > N we have:

A(x, 2x) ≤ Ak
n(x) ≤ An+1(x+ k).

Moreover, if x > max{N, k, n1} we have:

An+1(x+ k) < An+1(2x) < Ax(2x) < A(x, 2x).

We have thus concluded that A(x, 2x) < A(x, 2x) which is stupid. Thus, A /∈ E and
indeed, the function λx.A(x, x) dominates ALL primitive recursive functions.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 13

End of digression

So (if you were brave enough to read through the previous section) now you know of
a function that we can see how to compute (and given enough time we could really
write a register machine program for) which is not primitive recursive. This justifies
the word primitive in the name! Now we’ll define the actual recursive functions. The
definition will start of rather similar, but there is a small caveat:

	Chapter 5. What's a computer, anyway? (Cont'd)
	2. Recursive functions are defined one step at a time

