CHAPTER 5

What’s a computer, anyway? (Cont’d)

2. Recursive functions are defined one step at a time

2.1. The Basics. Now that we’ve talked about models of computation, we’d
like to figure out what kinds of functions they can compute. Functions will be at the
heart of our discussion, so I'd like to have some handy notation for them. Let’s fix
some.

For n € N we will write F,, for the set {f : N* — N : f is a function}, and we will
write F for |J, oy Fn- I'll be using a little bit of A-calculus notation in this chapter.
Namely, if f € F,, then I'll write:

f=Xey-xp. fo,. .. xp).

If this notation is confusing to you, don’t worry too much about it. In any case,
the main advantage it has is that it easily allows us to see functions of multiple
arguments as sequences of functions of one argument. For example:

AT 2. (21, 22) = Avy.(Axo f (21, 72))

and that it allows us to pass functions to other functions as variables (i.e. it makes
writing composition of functions easy). For example:

Az f(x))(Az.g(2)) = Az f(g(x)).

Anyway, whatever.
The most basic functions in F are the following:
e The successor function S = \z.x + 1.

e The nullary constant function C{ which is always equal to 0, for nota-
tion’s sake CJ = Az.0.

e For every n € N and every ¢ < n the function P, that given an n-tuple

returns its ¢-th coordinate, we call these the projection functions. In our
A notation:

P =\zvy27

1

2 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

The set of basic functions B C F is the following set:

B:={S}u{chu (U{Pf:z‘ﬁn}).

neN

Exercise 2.1.1. Show that if f € B, then f is register-machine computable.
2.2. Primitive Recursive Functions.

Definition 2.2.1. The set of primitive recursive functions, & C F, is defined by
induction, as follows:

(1) BCE.

(2) If f1,...,fm € ENF, and g € F,, N E, then the function h defined by:

h:N"— N
(1, yxn) = g(filxy, o), ooy fn(@1, - xn)).
is also in &.

B)If feF.NE, g€ FoaNE, then the function h defined by:

h:NFT 5 N
(l'l T 1) s f(xlv s 7'1716) if Tr+1 = 07
T g(x1, . xp, g1 — L (2, ... 2, w1 — 1)) otherwise
is also in &.

(4) That’s it.

Let’s fix some terminology /notation:

e If S is a set of functions satisfying (2) then we say that S is closed under
composition. We write g(fi,. .., f,) for the function h defined in (2).!

o If S is a set of functions satisfying (3) then we say that S is closed under
primitive recursion.

e For each n, k € N we let C}' denote the constant function A\z; - - -z, k.

Some first steps:

1 think I've said this before.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 3
Lemma 2.2.2. The following functions:
(1) Cp for all k,n € N.
(2) Axy.x +y
(3) \ey.x - y.
(4) Axy.av.
(5) A\vy.x —y (Recall: = is the bounded subtraction function from a while back).

are primitive recursive.

PROOF. Let’s do some of these for practice:
(1) Trivial.
(2) Let h be the function defined by recursion as follows:
h:N>— N

(@y) = {P?f’(x,y, S(h(z,y—1))) if y=0.

We can prove by induction that this A(x,y) = x + y, and we will do so, but
first, observe that the way I've written this function is very convoluted, just
to fit it exactly with the definition. An easier way of writing this would be:

h:N* =N
x ify=0
(z,y) — .
S(h(z,y—1)) if y=0,
observing that since primitive recursive functions are closed under compo-

sition and contain projections, we can view any f € £ N F, as a function
feé&nF, for any g > p.

Now to prove that h(z,y) = x +y. We do so by induction on y. If y =0
then h(z,y) = h(z,0) = z = x + 0. For the inductive step, suppose that
y>0and h(z,y — 1) =+ (y — 1). Then:
ha,y) = S(h(z,y —1)) =S+ (y—-1) =(@@+(y—-1)+1
=x+vy.

4 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

(3) Now that we have shown that addition is primitive recursive, we can just
use it. Let h be the function defined by:

h:N? > N

(2,y) > 0 ify=0
’ r+h(z,y—1) if y>0,

The proof is the same inductive argument. The base case is trivial. For the
inductive step, think about the following for a few seconds:

Mry)=z+h(z,y—1)=c+zx(y—1)=zx((y—1)+1)
=x X y.
(4) Exercise.
(5) First, let hg be the function:

ho : N — N

T ifz=0
€T —
{x—l if x>0.

Of course, this is just Axz.x — 1. Now, we can define our function proper:
h:N?* - N
x ify=20
(z,y) = , .
h(x,y —1) =1 if y>0.

O

At this point, you really should be thinking back to register machines and the “clo-
sure” properties we proved.

THEOREM 2.2.3. Every primitive recursive function is register machine computable

PROOF. We've actually already shown this in Proposition 1.1.4, Proposition 1.1.6,
and Proposition 1.1.7. ([l

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 5

We naturally extend our definition to subsets of N”. Recall that we can associate
every subset Y of a set X with its characteristic function 1y, which is the function:

1yIX—>{O,]_}

1 ifzeY
T)
0 otherwise.

Some people call this the indicator function of Y.

Definition 2.2.4. Let X C N". We say that X is primitive recursive if its charac-
teristic function 1y is primitive recursive.

Example 2.2.5. The set Ny is primitive recursive. Indeed:
Iy, =1=(1=x).2
The set X = {(z,y) € N*: x < y} is primitive recursive. Indeed:
1x =1y, (y —).
Let’s prove some properties of primitive recursive functions and sets. The next
lemma will be extremely useful later on both in that it will allow us to build tones

of primitive recursive functions but also in that (if we read between the lines) it is
starting to show us where the limitations of primitive recursion lie.?

Lemma 2.2.6.
(1) The set of primitive recursive functions is closed under permutations of vari-
ables.
(2) If X C N"™ is primitive recursive and fi,. .., [, € FP are primitive recursive,

then so is the set {(z1,...,x,) : (f1(T),..., fu(T)) € X}.

(3) The set of primitive recursive subsets of N contains O, N*, and is closed
under U, N and relative complements.

(4) Definition by cases: Let Aq,..., Ay be a partition of NP into primitive

recursive sets and let fi,..., fr : NP — N be primitive recursive. Then, the

2This is either clever or stupid, but I’ll let you decide.
3The word bounded will appear multiple times.

6 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

function:

f:N =N

filzy,..,xp) if (x1,...mp) € Ay
fg(l‘l,...,.fﬁp) if(xl,...xp) GAQ

Je(xr, .. @) if (... 1) € Ay
18 primative recursive.

(5) Bounded sums and products: If f € F,1 is primitive recursive, then so
are the functions:

y y
)\xl,...,xn,y.Zf(xl,...,a:n,y) and)\xl,...,xn,y.Hf(xl,...,xn,y)
i=0 i=0

(6) Bounded p-operation: Let X C NPT be primitive recursive. Then the
function:

f:NE 5N
_ 0 if there is no t < z with (z,t) € X
(z,2) — e _

to if to is minimal in N s.t. tg < z and (z,1) € X.
We write f(z,2) = u(t < 2). ((7,t) € X).*
(7) Bounded quantification: If X C NPT is primitive recursive, then so are:

Xe :={(x1,...,2p,2) 0 if there is some t < z s.t. (T,t) € X}

and

Xo i ={(21,...,2p,2) if for all t < z we have (Z,t) € X}.

PROOF.
(1) This is trivial, since we can compose in funky ways with projection functions.
(2) The indicator function of the set in question is but the function 1x (f1, ..., fa)

(3) It suffices to show complements and intersections 1ynx = 1 = 1x and
1me = 1X X 1)(.

We write w for “minimal”. The expression here means that the function returns the smallest ¢
below z which satisfies a primitive recursive condition. We are talking about a bounded operation,
since we have an upper bound — we’ll only try things up to z.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 7

(4) We simply observe that:
k
f = Z 1Ai X f’L
i=1

5) For example:
(5) p
h: N - N

f(z1,...,2p,0) ify=20
f(x1, ..., 2p,y) + (21, ... ,2p,y — 1) otherwise.

(1, .., 2p,y) {

(6) This one is certainly clever: We set f(z,0) = 0, of course. Then for the
recursive step:

f({i‘,Z) if Zf:o 1X(f7t) > 1
f(Z,z+1)=¢2+1 if > o1x(z,t)=0and (z,z4+1) e X
0 otherwise.

We have here used both bounded sums and definitions by cases.

(7) It is enough to show X, is primitive recursive (we can then take comple-
ments). To see this:

1 if 2;1 1y (z,t) > 1
0 otherwise.

1X6(E,z) = {
U

This lemma lets us see that many many sets we know and love are primitive recursive.
Some of the most lovable ones will be collected in the next corollary.

Corollary 2.2.7.
(1) The set {(z,y) € N?: y|x} is primitive recursive.”
(2) The set of P C N of prime numbers is primitive recursive.

(3) The function pr : N — N which on input n returns the (n + 1)-st prime
number is primitive recursive.

(4) There is a primitive recursive bijection pair : N x N — N.

SHere ylx denotes the assertion “z is divisible by y”

CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

(5) There are primitive recursive functions unpair, : N — N and unpair, : N - N
such that:

unpair, (pair(z1, x2)) = s,
fore < 2.

(6) More generally, for all m € N there are primitive recursive bijections
tuple” : N" — N
and primitive recursive functions
untuple : N* — N
for each © < n such that:

untuple (tuple”(z1, ..., x,)) = ;.

PROOF.

(1) First, we see that the function ¢(x,y) which given (z,y) returns the floor of
% if y > 0 and 0 otherwise is primitive recursive. Indeed:

q(z,y) = (ut <z)((t+1) xy >).

Given this, we have that the characteristic function of the set {(x,y) € N? :
ylx} is just:
L= (z=q(z,y) xy).

(2) We know that primes are the numbers greater than 1 that are only divisible
by themselves and 1. Consider the following three primitive recursive sets:

Xy ={reN:z>1}
Xo={(v,y) eN 1y < 1}U{(z,9) e N1z =y} U{(2,y) e N1y Jur}
Then, the following set is also primitive recursive:
X3 ={(z,2) € N*: forall y < z we have z € X5}

And thus, the set

X, =X3N{(z,y) e N*: z =y}
is primitive recursive. Finally, the set:

X1 N PEXy)

is primitive recursive, and is, indeed the set of all primes.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 9

(3) After a little bit of thought, we see that:
2 itn=20
pr(n) = .
p(z <pr(n—1)!'+1).(z >pr(n—1) and z € P) otherwise,

since there is always a prime strictly between n and n!+2 [WHY?|. Now to
elaborate a bit about the shorthand used above, in case you're very pedantic
like I proudly used to be when I was younger. For every y € N the set:

Xoy={reN:z>y}
is primitive recursive. Let g(z,y) be the following function:
9(@,y) = p(z <y)(z € X5y N P)
This is primitive recursive. What we took before was pr(n+1) = g(n, pr(n)).
(4) The map in question is:

. 1
pair(z,y) = i(x +y)(z+y+1)+uv.

(5) The map unpair, is given by
pz < z.(there is t < x s.t. pair(z,t) = x)

and the map unpair, is defined analogously. I have again used here a similar
shorthand as the one I used in (3).

(6) Immediate from (4) and (5) by induction.
U

Remark 2.2.8. In our proof that the set of all primes P C N is primitive recursive
I tried to be as formal as possible. For instance, arguing as in that proof, we can see
that for instance the following set is always primitive recursive:

X ={zeN: forall z <z we have z € Y}

for any primitive recursive set Y. More generally, since primitive recursive sets are
closed under Boolean combinations, we can shortcut things a lot.

If you're worried that the details of parts (4)-(5) went a bit fast, fret not:

Exercise 2.2.9.

(1) Prove that pair is a primitive recursive bijection.

10 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

(2) Prove that unpair, have the required properties (from the statement of the
corollary).

(3) Construct for all n € N the map tuple” and the maps untuple'.

We now have all the tools to define something very crucial for our later exploration
of incompleteness, our primitive recursive way of coding sequences of numbers into
numbers. We'll do this now that all the ideas are fresh in our heads, and return to
it when we need it:

2.3. Let’s put this here for later. If (xg,...,2,-1) € N", then we define the
Godel number of (x,...,z,_1), denoted (zo, ..., x,_1), as follows:

(20, 2ama) 2= pr{0)F X -+ X pr(n — 2)% x pr(n — 1)

and, for the sake of completeness:
() =1.

Let’s summarise the main properties of this new beast:
Lemma 2.3.1. Gddel numbering lets us define a map from the set of all finite se-
quences of natural numbers to N\ {0} It satisfies the following properties:

(1) The binary component function:
NxN-—=N

(2,) > {gl i];}:;r:wifs, ey Tp1) and i < n
is primitive recursive. We write (x); for the binary component of x.

(2) The length function given by lg((xo,...,xn_1)) = n is primitive recursive.

(8) For alln € N the map () [nn— N is primitive recursive.

(4) For allz € N, Ig(x) < x.

(5) For all x € Ny, (z); < x, for all i € N.

PROOF. The bullets here are not that hard once we uncover what they mean.
I'll let everyone think about them for a bit, before I spoil the fun. 0

Anyway, enough Godel stuff for now. Let’s get back to register machines. It really
should be starting to feel like these primitive recursive fellas are good at capturing
what we can compute using a “computer program”. Unfortunately, it turns out that
there are functions which we can intuitively compute, but are not primitive recursive.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 11

We'll take a glimpse at one now, to justify the “correct” notion of a computable
function.

2.4. The Ackerman function. We’'ll here build a classical example of a func-
tion that is intuitively computable (i.e. we can sit down with pen and paper and
compute it) but is not primitive recursive. It will turn out that this function is reg-
ister machine computable, and once we expand our notion of primitive recursive just
a bit, we’ll get the “right” notion of computation.

We define a map A : N> — N as follows:

o A(0,z) =2%, for all z € N.

e A(y,0) =1, for all y € N.

e For all z,y we set A(y + 1,2+ 1) = A(y, A(y1, 2)).
For each n € N set:

A, = x.A(n, x).
Then, Ag = 2% and, clearly for all n € Ny, we have that
A,(0)=0and A,(z+1) = A,_1(A,(x)).

Two things:

e This shows that the function A : N> — N exists.

e Fach A, is primitive recursive.

At this point we’d love to be able to say that A is also primitive recursive, but of
course, we all see the writing on the wall at this point.

Lemma 2.4.1. For all n,x € N we have A, (z) > x.
PROOF. Easy exercise on induction. 0]
Corollary 2.4.2. For alln € N, the function A, is strictly increasing.

PROOF. Well. This is obvious for n = 0. For n > 0 this is by the previous lemma
and the fact that A, (z +1) = A,_1(A,(2)). O

Similarly, we can also deduce the following:

Lemma 2.4.3. For alln > 1 and all x € N we have that A, (x) > A,_1(x).

12 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

A little bit more notation. For k € N set A to be the function A, iterated k times
(i.e. composed with itself & times). Then:

Lemma 2.4.4. The functions A* are all strictly increasing. Moreover:
Aj(w) < ApH(@), AR () > @, Ay o Af = AL
and if m < n then Ak < A* pointwise.

Why all of this you may ask... The functions A¥ provide a pretty fine way of cutting
up the primitive recursive functions in terms of how fast they grow. We say that a
function f € F; dominates a function g € F, if there is some N € N such that for
all x € NP we have that:

g9(z) < f(max{xy,...,x,, A}).
Let us define
C, ={g € F: for some k € N we have that A* dominates g}
You can take the following on faith:

Uc.=¢,

neN

where recall £ is the set of all primitive recursive functions. It’s actually not so hard
to show:

® (U, en Cn clearly contains all basic functions.

e By one of the lemmas on A¥, it’s easy to deduce that (J, .y C, is closed
under composition.

e The crux is showing that (J,, . Cy is closed under primitive recursion (and
okay fine, that’s actually pretty hard).

Suppose that A € £. Then \x.A(z,22) € € = |J,, .y Crn- Then there exist integers

neN ~'n

n,k and N such that for all x > N we have that
Az, 2z) < Ak ()
Thus, for all x > N we have:
Az, 2x) < AF(2) < A, (z+ k).
Moreover, if x > max{N, k,n,} we have:
Apii(z+ k) < Ap1(20) < A (22) < A(z, 22).
We have thus concluded that A(x,2z) < A(x,2z) which is stupid. Thus, A ¢ £ and

indeed, the function A\z.A(z,z) dominates ALL primitive recursive functions.

2. RECURSIVE FUNCTIONS ARE DEFINED ONE STEP AT A TIME 13

End of digression

So (if you were brave enough to read through the previous section) now you know of
a function that we can see how to compute (and given enough time we could really
write a register machine program for) which is not primitive recursive. This justifies
the word primitive in the name! Now we’ll define the actual recursive functions. The
definition will start of rather similar, but there is a small caveat:

	Chapter 5. What's a computer, anyway? (Cont'd)
	2. Recursive functions are defined one step at a time

