
CHAPTER 5

What’s a computer, anyway? (Cont’d)

3. Halt and catch fire (Cont’d)

3.2. Recursively Enumerable Sets. Just like we defined the notion of a prim-
itive recursive set, we will say that X ⊆ Nn is a recursive set if its characteristic
function is a (total) recursive function. More importantly, for now, we are interested
in the following notion:

Definition 3.2.1. A set X ⊆ Nn is called recursively enumerable it is the domain
of a partial recursive function.

Intuitively, X ⊆ Nn is recursive if there exists an algorithmic procedure which, for
all x ∈ N allows us to decide if x ∈ X or not. On the other hand, X is recursively
enumerable if there is an algorithm which for all x ∈ Nn terminates if and only
if x ∈ X. So given x ∈ Nn we can run our algorithm, but unless that algorithm
terminates, we cannot know if x ∈ X and we have no guarantee that our algorithm
will terminate.

Our first big result about recursively enumerable sets will justify their name. Namely,
we will prove that a non-empty X ⊆ Nn is recursively enumerable if and only if X is
the range of a primitive recursive function, i.e. if there is an (easy) algorithm which
eventually lists all elements of X.

The domain of the partial function whose index is x (i.e. of the partial function ϕp
x)

will be denoted by W p
x . Then, the set:

W = {W p
x : x ∈ N}

is the set of all recursively enumerable sets. We overload our terminology to say that
x is an index of A ⊆ Np if A = W p

x .

Lemma 3.2.2. Every recursive set is recursively enumerable

Proof. Let X ⊆ Np be a recursive set. We have to show that there is some
recursive (partial) function f such that dom(f) = X.

1



2 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

By assumption, 1X is a recursive function, of course. To build our desired function
f , consider the function:

g(x) = µy.(y + 1 ∈ {x}),
or, more simply put:

g(x) = µy.(y + 1 = x).

This is, of course, a recursive function, and dom(g) = N \ {0}. Now, the function:

f = g ◦ 1X

is the function we want, since:

f is defined at x ⇐⇒ 1X(x) ̸= 0 ⇐⇒ x ∈ X. □

The obvious question which we will eventually tackle is the following:

Is every recursively enumerable set recursive?

You can take a guess right now, but it may get more educated as we develop a
somewhat deeper understanding of recursive and recursively enumerable sets.

As a warm-up, we have the following analogue of Lemma 2.2.6(3):

Lemma 3.2.3. For all p ∈ N, the set of recursive subsets of Np is closed under
Boolean combinations.

Proof. HW8 □

The analogous result for recursively enumerable sets will eventually turn out to not
be true, but we can at least prove the following:

Lemma 3.2.4. For all p ∈ N, the set W (which recall is the set of all recursively
enumerable sets, i.e. {W p

x : p ∈ N}) is closed under unions and intersections.

Proof. Suppose we are given W p
x ,W

p
y ∈ W be the domains of partial functions

with indices x and y, respectively. Consider the machine which computes ϕp
x + ϕp

y.
Then, this machine halts on n ∈ Np if and only if n ∈ W p

x ∩W p
y , so intersections are

out of the way.

Unions are a slightly more delicate business. The intuition is the following, n̄ ∈
W p

x ∪W p
y if one of the two computations ϕp

x(n̄) or ϕp
y(n̄) eventually halts. We thus

take:
f(n̄) := µt.[(t, n1, . . . , np) ∈ haltedp(x) ∪ haltedp(y)].



3. HALT AND CATCH FIRE (CONT’D) 3

Indeed, if n̄ ∈ W p
x ∪W p

y then f(n̄) is defined, and conversely, if. f(n̄) is defined, then
n̄ ∈ haltedp(x) or n̄ ∈ haltedp(y) so one of ϕp

x(n̄) or ϕp
y(n̄) is defined, as required. □

The following theorem gives us what is probably one of the most important properties
of recursively enumerable sets:

Theorem 3.2.5 (Theorem of the Complement). Let A ⊆ Np. Then, the following
are equivalent:

(1) A is recursive.

(2) Both A and Np \ A are recursively enumerable.

Proof. (1) =⇒ (2) is immediate, since every recursive set is recursively enu-
merable, and recursive sets are closed under Boolean combinations. For (2) =⇒ (1),
suppose that both A and Np \ A are recursively enumerable. To fix ideas, suppose
that A = W p

x and Np \ A = W p
x′ . Then, the function:

h(n1, . . . , np) = µt.[(t, n1, . . . , np) ∈ haltedp(x) ∪ haltedp(y)]

is a total recursive function. Observe that:

n̄ ∈ A ⇐⇒ (h(n̄), n̄) ∈ haltedp(x),

which means that:
1A(n̄) = 1haltedp(x)(h(n̄), n̄). □

Remark 3.2.6. Recursion theory has this way of making relatively easy statements
sound very obscure. Here’s what’s happened in the proof above:

• If both A and its complement are recursively enumerable, then for every
n̄ ∈ Np either the machine that halts on every element of A or the machine
that halts on every element not in A halts on n̄.

• We write a new machine h that runs both these machines on a given input
n̄ at the same time, and stops when one of them stops. (At this point we
don’t know which!)

• Suppose that h runs for t steps. We can then check if the computation of
the machine for A finishes in t steps. If it does, great, we’re in A! If not,
then also great, we’re not in A!

Theorem 3.2.7. Let A ⊆ Np. Then, the following are equivalent:

(1) A is recursively enumerable.



4 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

(2) There is a primitive recursive set B ⊆ Np+1 such that A = π(B), where π
denotes the projection onto the last p coordinates.

Proof.

• For (1) =⇒ (2), suppose that A is recursively enumerable, say A = W p
x .

Then A is precisely π(haltedp(x)).

• For (2) =⇒ (1), suppose that A = π(B), where B is primitive recursive.
Then A is the domain of the partial function:

µt.[(t, x1, . . . , xp) ∈ B]

□

Exercise 3.2.8. Show that:

(1) The graph of a partial recursive function is recursively enumerable.

(2) The range of a partial recursive function is recursively enumerable.

Theorem 3.2.9. Every non-empty recursively enumerable subset of N is the range
of a primitive recursive function in F1.

Proof. Let A be a non-empty recursively enumerable subset of N. Suppose that
A = W 1

x . Let n0 ∈ A. Define the following function:

g(z) =

{
unpair2(z) if (unpair1(z), unpair2(z)) ∈ haltedp(x)

n0 otherwise.

Since n ∈ A if and only if (t, n) ∈ haltedp(x), we have that:

• If n ∈ ran(g), then either n = n0 ∈ A or n = unpair2(z), where (unpair1(z), unpair2(z)) ∈
haltedp(x).

• If n ∈ A, then there is some t ∈ N such that (t, n) ∈ A. Since pair is a
bijection, there is some z ∈ N such that z = pair(t, n). Then, n = g(z) ∈
ran(g).

□



3. HALT AND CATCH FIRE (CONT’D) 5

3.3. Back to diagonalisation. We will now show that there are recursively
enumerable sets which are not recursive. This will be the key (and only step) in our
(i.e. Alan Turing’s) inevitable solution to the Halting problem.

Let’s pull our first and best trick once again.

Let g(x) = ϕ1(x, x) (g is the partial recursive function that halts on input x if the
machine whose index is x halts on input x! Can you see how things are about to get
diagonal?)

Let A be the domain of g. Since g is a recursive function, A is by definition recursively
enumerable. The key property of A is that x ∈ A if and only if g(x) halts, if and
only if ϕ1(x, x) halts, i.e. if and only if x ∈ W 1

x .

By Theorem 3.2.5, A is recursive if and only if N \A is also recursively enumerable.
Suppose towards a contradiction that N \ A is recursively enumerable. Then. there
is some n ∈ N such that N \ A = W 1

x . In particular, for all n ∈ N we have that:

n ∈ N \ A if and only if n ∈ W 1
x

But then, we have that:

x ∈ N \ A if and only if x ∈ W 1
x

if and only if x ∈ A,

since, once again x ∈ A if and only if x ∈ W 1
x . Thus we have written down something

absurd, so N \ A is NOT recursively enumerable, and hence A is not recursive.

To put it all together:

Theorem 3.3.1 (The Halting Problem is Undecidable). The set

{(m,x) : ϕ1(m,x) is defined}

is not recursive.

Proof. If it were, then the set {x : ϕ(x, x) is defined} would also be recursive,
but we have just seen that it’s not. □

Thus we have answered the Halting Problem:

Given a piece of computer code and a set of inputs for that code, there is no effective
way of knowing whether the code will ever stop or not!



6 CHAPTER 5. WHAT’S A COMPUTER, ANYWAY? (CONT’D)

3.4. Two little highlights. One of the highlights of early (post-Turing) recur-
sion theory is Rice’s theorem, which essentially says that the only sets of partial
recursive functions that we can effectively recognise are trivial. We’ll not get to prove
this here (although we are arguably very close to having all the tools to do so). This
theorem, in particular, implies the following (intuitive) statements:

• There is no way of effectively describing all computer programs that compute
a given function f .

• There is no effective way of recognising whether or not two pieces of code
compute the same function.

Alright, that’s enough recursion theory for a day.



3. HOMEWORK 8 7

Homework 8


	Chapter 5. What's a computer, anyway? (Cont'd)
	3. Halt and catch fire (Cont'd)
	Homework 8


