CHAPTER 6

Okay it’s undecidable, but it can’t be incomplete too

In this chapter, we will prove a real big theorem, the kind of theorem that goes down
in history books (especially books on the history of mathematics). We will need
to use techniques from both first-order logic (things like definability, compactness,
Léwenheim-Skolem) and from recursion theory (really, recursive functions are at the
heart of things).

The main question we will want to answer is essentially Hilbert’s problem that put
us down this long and lonesome road. Namely:

e Is there a nice axiomatisation of arithmetic that is complete?

o Is there a decision procedure that, given an axiomatisation of arithmetic,
allows us to decide if a sentence is a consequence of the axioms or not?

To answer these questions, we’ll get back to our diagonal roots. To misquote some-
thing from a while back:

“As it applies to answering the second question, this argument reminds us of the
famous paradox of Epimenides, the Cretan, who claimed that all Cretans are liars.’

)

Essentially, what we will do is construct a formula ¢ which literally says “The formula
¢ is not provable”. Assuming our set of axioms is sound, we must have that this
formula is true (otherwise, if this formula is false, then ¢ is provable, and therefore
the axioms prove something false). Of course, if ¢ is true, then ¢ cannot be provable,
because that’s what ¢ asserts, in the first place.

This result is extremely cool (and it’s featured in many pop-sci expositions of mathe-
matical logic), but we’ll try to be rather careful about how we formulate everything.!
The crucial fact here is that we wish for a set of axioms that is “nice” and what does

"Warning! Don’t believe everything you see on the internet. (If you're reading these notes on
the internet, please refer to the liar paradox.) The incompleteness theorem will not contradict the
completeness theorem! Recall that a theory T is called complete if for every formula ¢ we have
that T+ ¢ or T F —¢. A proof system F (like our Hilbert proof system from a while back) is
called complete if whenever E ¢ (i.e. ¢ is universally valid), we have that - ¢. The incompleteness
theorem refers to the FIRST notion of completeness not the second...
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nice mean for a set of axioms? Weeeeell... it should mean that we can essentially
write them all down (or at least have a computer write them all down), i.e. nice
means recursively enumerable. Okay, enough blabbering, let’s get to the maths.

1. Peano Lessons

1.1. The axioms. First and foremost, we need a language. I've mentioned the
language of Peano arithmetic, Lpeqno, before, but it feels like it was a lifetime ago,
so here we go:

e One constant symbol 0.
e One unary function symbol S.
e Two binary function symbols 4 and X.

As T did before, I will write  + y and x X y rather than the insane +(x,y) and
x(x,y).

We're all familiar with N from the second chapter of our childhood, namely here N
will the domain of an L peg,o-structure Ny where 0 is interpreted as 0, + and X as
the usual + and x and S is interpreted as the successor function:

S =X\z.xz+ 1.

And if you're worried that we did all this recursion theory only to learn that 0 is 0,
fret not. Things will get more complicated.

The set of Peano’s axioms consists of just seven (7) axioms and 1 (one) axiom
scheme.

First, the axioms:

Ay (Va)—=(Sz =0)

Ay (Vz)(3y)(—(z =0) — (Sy = z)
As (V)(Vy)((Sz = Sy) = (z =y))
Ay (Va)(z £ 0=2)

As (Vz)(Vy)(S(z + y) =z £ Sy)
As (Vz)(z x 0=0)

A7 (Vo)(Vy)((z x y) + = x Sy)

And now the axiom scheme:

ISy (vy) (90, 7) A (Vo) (¢(z,5) = d(S,9)) — (V) (z, 7)),
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for each Lpegno-formula ¢(z, vy, ..., yn).

Let Tpa be the Lpeano-theory consisting of Ay — A; and ISy, for all L-formulas
Qb([ﬁ, Y1y ;yn)

The point of IS, is that it allows us to argue (in models of Tpy) using our usual
intuition of induction. Indeed, using ISy, to show that a property ¢(z,t1,...,%,)
is provably true from Tpa (for some Lpegno-terms ti,...,t,) for all z, we can do
induction (who’d have thunk?), more precisely, we just need to prove:

e The base case: Tpa - ¢(0,1).
e The inductive step: (Vz)(¢(z,t) — ¢(Sz,1)).

Remark 1.1.1. What does Tpa - ¢ (for some Lpeyno-sentence ¢) mean? It means
that there is some derivation in our good-old Hilbert proof system which uses the
axioms of Tpyu, the quantifier axioms, the equality axioms, and propositional tau-
tologies that ends with ¢. BUT we have proved that F is sound and complete, i.e.
that Tpa - ¢ if and only if Tp4 F ¢. Thus, to show that Tp4 - ¢ we may well show
that Tps E ¢, i.e. that for every model NV F Tp, we have that N E ¢. As we will
see (and actually should have already seen, if we were paying attention), Tp4 has
many models. The only

Induction, as you may be able to tell already, is a very strong axiom scheme. We
will also consider a weakening (i.e. a sub-theory) of Tp,, which I will denote by
Tpa, (referred to sometimes as weak Peano arithmetic) and which consists only
of axioms A; — A;. There is a crucial fact about Tp,,, which is not hard to prove:

FACT. Tpa, is a finite theory.
Exercise 1.1.2. Show that N, as described before is a model of Tp4 and of Tp 4,

Of course, Lpeano only “sees” 0, but really, it sees more elements, it “sees” S 0 and
also S S 0 and also S S S 0 and also... okay you see where I'm going for this. For
each integer n € N (where N is the usual? mathematical object not a model of Tp4!)
we will let n denote the Lpggno-term

SS5--50.

—_—

n times

21 tried pretty hard not to use the word standard here. Footnote 2 exists only because I failed.
God(el), why can’t T help myself with self-reference?
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So the terms I wrote before were 1, 2, 3. Anyway, given a model N E Tp,, we will
say that an element of IV is standard if it is the interpretation of a term of the form
n, for some n € N (again, as a mathematical object, I'll stop saying it though). The
little subscript in N,; was meant to indicate that this is the standard model of
Tpa (and Tpy,), the one where every element is standard. We call models of Tpy
(or T'pa,) in which there are elements that are not standard non-standard.

THEOREM 1.1.3. Non-standard models of Tpa (and Tpa,) exist.

PRrROOF. This follows immediately by the upwards Lowenheim-Skolem theorem.
Anyway, it’s been a minute since we discussed this, and we didn’t cover the proof in
class, so let’s prove it. Let I' be the following set of sentences:

I = {ﬁ(giﬂ):neN}UTpA,

in Lpeano U {c}. This is finitely satisfiable in N,; and hence it has a model. The
interpretation of ¢ in that model cannot be standard. O

It is a thesis (i.e. a non-formalisable conjecture) that all theorems of arithmetic
follow from Tp4. In the next exercise, you will be asked to do some formal proving,
because I'm worried you may have missed it after all the recursion theory we did:
Exercise 1.1.4 (Long and hard!). Let N'F Tp4. Prove that in N:

(1) Addition and multiplication are associative and commutative.

(2) The cancellation laws for addition and multiplication hold, namely:

NEVz)(Vy)(V2)(x +y =z +2) = (y = 2))
and
NE (Vo)(vy)(V2)((z # 0N (x X y =2 X 2) = (y = 2)).

It turns out that in weak Peano arithmetic, we cannot prove many of the properties

above (in some HW you may be asked to build a model of T4, in which addition is
not even commutative). Nonetheless, we still have the following:

THEOREM 1.1.5. Let N'E Tpa. The formula ¢(z,y) given by (32)(z + x = y) defines
total order on N, and this order is compatible with addition and multiplication.
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PROOF (SKETCH). That this formula defines a partial order compatible with +
and X is true in the usual N, and the way one proves this in N is essentially using
the Peano axioms.? 0

Hmph... Fine, let’s write a more proper proof.

PROOF. Let’s gather some facts that Tr4 can prove:
1) Tpa b (V2)(0 + = = x) [Use Ay, A5 and IS with the formula 0 +x = z|

(

(2) TpaF (V2)(Vy)(S(y + =) = Sy + z) [Use Ay a couple of times, A5 and IS]

(3) Tpat (Vz)(1 + x = Sx) [Use (1) and (2)]

(4) Tpak (Vo)(Vy)(z £y =y + ) [Use (1), A5, (2) and IS]

(5) Tpra F (Vx)(Vy)(Vz)(x + (y + 2) = (x + y) + 2)) |Use IS (on each of the
variables). The base case is by A4 and the inductive step, essentially, by As]

(6) TpaF (Vz)(0 x x =0) [Use Ag, A7 and IS]

(7) Tpa b (Vz)(z x 1 =2x) [A7, Ag and (1)]

(8) TpaF (Vz)(1 x x =x) [Use IS and up to four of the axioms of Tp4,|

(9) Tpa - wwww<Xxx@i@£wnﬁwi@z@HWwwma@m

This one is more of an exercise than the others]

(10) Tpa F (V2)(Vy)(V2)(z X (y X z) = (z X y) X 2)) |[You guessed it, this is by
IS and (9)]

(11) Tra = (V2)(Vy)(x x y =y X x) [Okay, I won’t solve the whole “Long and
hard” exercise here.|

(12) Tpa b (¥2)(Fy)(¥2)(x + 2 =y +2 > 3 = y)
(13) Tpa F (Vz)(Vy)(—(x = 0) — =(x + y = 0)). Okay, let’s prove this one:
e From A, and Az we have that:
Tpak =(z=0) = (B2)((x = 52) Az £y = Sz £ 2)))

e rom A; we then have that:
Tpa b ~(S(x + 2=0))

In particular, this is a consequence of Tpy,.

3You are not allowed to use this terrible reasoning when solving Exercise 1.1.4.
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(14) Tpa F (V2)(Vy)(x + y =0 — (x =0Ay = 0)) [This is immediate from (13)
and Ay4| — thus this is also a consequence of Tpy,.

(15) Tpra F (Vz)(Vy)(x + y = x — y = 0) [This is a consequence of (12), A, and
(4).]

So far, I've actually pretty much given you a blueprint of the solution to the “Long
and hard” exercise. Let’s use a bunch of the facts we’ve proved above, together with
more facts (to be proved below), to show that:

Tpat “(32)(z + © = y) is a total order compatible with 4+ and x”

In the remainder of the proof, I will use Tpy4 F = < y to mean that Tps F
(32)(z + = = y). The usual abbreviations <, >, > are all defined as usual.

Ah, also, by (4), I'm allowed to use the following:
Tpat (Vo) (Vy)(z <y > (F2)(z + 2 = y)).
Okay? Alright.
(16) Tpa F (Vz)(z < x) |This is just because Tpa - 0 +x = x|
(17) Tpa b (V2)(Vy)(V2)((z Sy Ay < 2) = 2 < 2) [By (5)]

(18) TtI:AkT (Vz)(Vy)((z <y Ay < x) = = =y) [Use (5),(15),(4), and (14), I
thin

(20) Tpa b (V) (Vy)((
(1)a A5a A4, (17)

(21) Tpa b (V2)(Vy)(V2)((z < y) = (x X 2 <y x 2)) [(9) and (11) — bad choice

of numbering?| N
(22) Tpa b (V2)(Vy)(=(y =0) — (z X y > x)) [Ay and A7 should do the trick|

(23) Tpa b (Vx)(My)(=((z = 0) V (y = 0)) = —(z x z = 0)) [If you've trusted
me thus far, you should trust that this follows from A7, As, A and Ay, if
not you should try it yourselves.|

(24) Tpa b (Va)(Vy)(V2)((z X 2 =y x 2) = ((z = y) V (2 = 0))) — here’s a
different kind of argument. Let N & Tp, and a,b,c € N arbitrary. Suppose
that ac = be (ie. N E (x X 2z =y x z)[a/x,b/y,c/z]. Then, by (20) we have
that a < b or b < a. In the first case, there is some d such that d + a = b,
hence by (11) and (9) we have bc = dc + ac. By (4) and (15) we have that
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dec = 0 and then we're done by (23). [Try out the argument in the other
case.|

O

It turns out that in the proof I didn’t give and then gave above, to prove that Tpa
proves that ¢(x,y) is a total order, we need that addition is commutative, which is
not necessarily true in models of Tp,,. Crucially, to prove that:

Tpal “(32)(2 + x = y) is a total order”

we need the induction scheme, in particular:
Remark 1.1.6. The theorem above is not true for models of Tp4,.

1.2. Models of varying standards. Having established that the formula ¢(x,y)
given by (32)(z + z = y) is a ((-definable) total order on models of Tp4, for N E Tpa,
I am now justified when I write x < y to mean that N'E ¢(z,y), as I did in the last
proof. The usual abbreviations <, >, > are all still defined as usual.

Definition 1.2.1. Let N, N’ E Tpa,, and assume that N is a substructure of N”.
We say that N is an initial segment of N7 if for all @ € N and all b € N’ we have
that:

(1) HN"Eb<athenbe N.
(2) If b ¢ N then N E a <b.
In this case, we also say that N’ is an end extension of N .
Remark 1.2.2. As I discussed earlier, < is not necessarily an order in models of

Tpa,. Nonetheless, in the definition above, when we write z < y we simply mean
¢(z,y) were ¢(z,y) was the formula (32)(z + =z = y).

The remark above is not all that important, since:

Proposition 1.2.3. Let N E Tpa,. The set:
M = {xz € N : x is standard}

is the universe of a substructure M of N that is an initial segment of N and is
isomorphic to Ny.
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Before getting into the details of the proof, let me remark that in this proposition
we are using the usual integers, so we are allowed to use INDUCTION ON N — this
is not the same thing as IS.

PROOF. Recall that a € N is standard if there is some n € N such that a = n/V.

Consider the (obvious map):
fN—>M

n— n

We should note straight away that f is surjective, since for every n € N, the term n
has an interpretation in A, and thus belongs to M.

We need to show that this map is injective, and in fact, a homomorphism of Lp-
structures. We will do this by slowly writing down a bunch of things that Tpa,
proves.

(1) Tpa, Fn+ 1= Snand Trs, F n+ 1= Sn. This follows once we observe
that all expressions here represent the same term, namely the term consisting
of n + 1 occurrences of S followed by a single occurence of the symbol 0.

(2) For all m,n € N we have that:

TpayFm+n=m+n

We prove this by (actual factual) induction on n (keeping m fixed). For
n = 0 we are done by Ay, since we have that:

Tpag-m £ 0=m.
For n + 1, we have to show that:
TpayFm+n+1=m+(n+1)
assuming, by induction, that:
TpayFm+n=m+n.

Since addition is associative in the actual factual natural numbers, we can
drop the brackets in the RHS.

On the one hand, by the first bullet, we have that:
Tpa,Fn+1=Snand Tpsy,Fm+n+1=S(m+n)
But also, by (As) we have that:
Tpag - m + Sn=S(m + n).

Putting everything together, this bullet follows.
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(3) For all m,n € N we have:
Tpa, Fm X n=mn.
This follows again by induction.
(4) For all n € N5, we have:
Trao b —(n = 0).

This follows essentially from A, since if n € Ny, then we can write n =
m + 1, for some m, and since Ty, - n = Sm, we're good.

(5) For all distinct n,m € N we have that:
Tpa, = ~(m = n).

The proof is by induction on min{m,n}. If either m or n is zero, then
we are done by the previous bullet; otherwise, it follows easily by inductive
hypothesis and the Tp4,-fact that successor is injective, i.e. As (since m and
n are both non-zero we think of them as the successors of their predecessors).

Putting all the bullets from above together, we see that M is indeed closed under
the interpretations of the functions and moreover that f is a homomorphism, and
moreover moreover that f is injective.

Finally, we ought to show that M is an initial segment of N'. For this, it will suffice
to prove the following two bullets:

(6) For each n € N:

Tpa, - (V) (xgﬂ%/\xig),
i=1

We, of course, argue by induction on n. Suppose first that n = 0. Then we
need to show:

Tpag b (Vo) (Vy)(z £ y=0— (z=0Ay =0).
This is a consequence of Ay, A5, A; and A, (in that order).

For the inductive step, assume that the result holds for n. We must show
it for n 4+ 1. Let us now invoke soundness and completeness to make life a
little easier. We wish to show that Tp4, = ¢, for some formula ¢ (of course,
as we know, Tp4, is consistent), so it suffices to show that for any model of
Z E Tpa, we have T E ¢ (of course, on that model we will only be allowed
to use the properties guaranteed to us by the axioms). Let Z F Tpy,, and
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a € T such that ZF a <n + 1. It suffices to show that there is some p € N
such that p <n+1and ZF a = p.

We know that there is a point b € [ such that M F b + a = S n (that’s
just what it means to have ZF a < n+1). If a = 0 then we are done, and
if not, by A, there is some ¢ € M such that Z F a = Sc. By As and Aj
it follows that Z F b + ¢ = n. But this just says that Z F ¢ < n, so by
inductive hypothesis, there is some m < n such that Z F ¢ = m, and hence
ZE Sc =S5 m and after a moment’s thought, that’s enough to show the
result.

For each n € N we have:
Tpa, = (Vz)(x <nVz<n).

This is again by induction on n. Of course, if n = 0 then we are done.
Otherwise, we may argue as in the previous bullet. Let Z E Tp,, and let
a € I. We need to show that ZF a <n+1of ZF n+1 < a. This is of
course obvious if ¢ = 0, so we may assume otherwise, and like before find
some b € [ such that Z F a = Sb. By our inductive hypothesis, we know
that ZE b < norZF n < n. In the first case, there is some ¢ € I such
that ZF ¢ + b = n and by A; and the very first bullet we can deduce that
ZFE c+ a=n+1, which gives the result. In the second case, similarly,
there is some d such that Z F d + n = b and we can similarly conclude.

Putting everything together, the result follows. O

In particular, since every model of Tp4 is a model of Tpy, we have the following

corollary:

Corollary 1.2.4. Let N E Tpy, then the set of all standard elements of N is an
initial segment of N isomorphic to Ny.
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